Deep neural networks in language models

Szymon Łęski

SAMSUNG

Language models

• Language model assigns probability to a sequence of words

The cat is walking in the bedroom.

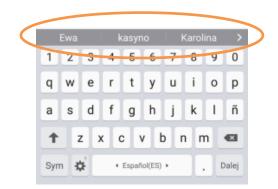
The elephant is walking in the bedroom.

Walking cat is bedroom the the in.

 Applications: choosing the right word/sentence from a list of candidates

Language models – applications

- Speech recognition: *hard rock ↔ card rock*
- Text or handwriting recognition (OCR): you are right ↔ you ave right
- Machine translation: which translation is better?
- Typo correction
 Are you happy now?
 Happy now → Happy new
- Text input prediction



Language models – how to build

The cat is walking in the bedroom.

• Counting sentences in a corpus?

The cat is walking in the bedroom.~ 76400

Three days ago I saw my cat walking in the bedroom. 0

• The sentence for which we evaluate the model is most likely not present in the corpus

Language models – how to build

- $p(w_1, w_2, \dots, w_N) =$ $p(w_1) \cdot p(w_2|w_1) \cdot p(w_3|w_1, w_2) \cdot \dots \cdot p(w_N|w_1, w_2, \dots, w_{N-1})$
- Close words are more statistically dependent
- Unigram model: $\approx p(w_1) \cdot p(w_2) \cdot p(w_3) \cdot \dots \cdot p(w_N)$
- Bigram model: $\approx p(w_1) \cdot p(w_2|w_1) \cdot p(w_3|w_2) \cdot \dots \cdot p(w_N|w_{N-1})$
- Probabilities estimated *from corpus:*

 $p(w_3|w_1, w_2) = n(w_1, w_2, w_3)/n(w_1, w_2)$

Three days ago I saw my cat walking in the bedroom.

n-grams – example

- serve as the inspiration 1390
- serve as the input 1323
- serve as the information 838
- serve as the instrument 614
- serve as the industry 607
- •
- serve as the indispensible 40

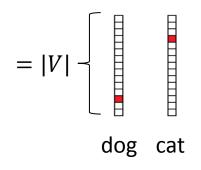
Google Research Blog

n-gram language models

- Pros: good scalability, speed
- Cons:
 - sparsity / short context:
 for larger n many n-grams will not be present
 in the corpus (serve as the insight)
 - word similarity is not taken into account:
 e.g. went ↔ gone; cat ↔ dog

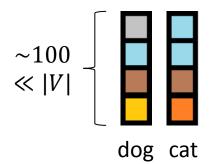
Word representations

...



The cat is walking in the bedroom.

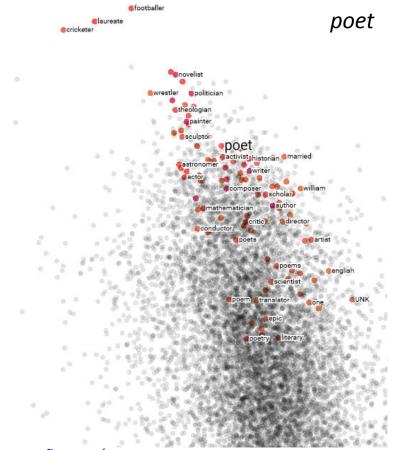
A dog was running in a room.



The cat is running in a room. A dog is walking in a bedrom. The dog was walking in the room.

Bengio et al. 2003

word2vec

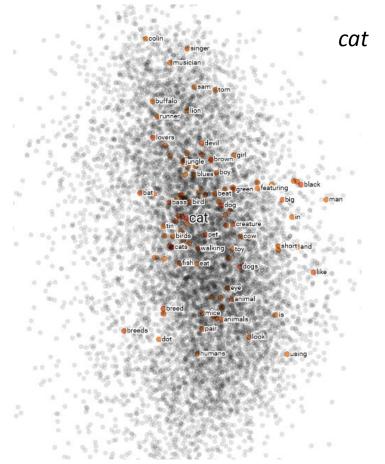


Nearest points in the original space:

writer	0.171
painter	0.202
author	0.206
composer	0.207
novelist	0.214
politician	0.222
philosopher	0.230
playwright	0.233
ournalist	0.247
nistorian	0.258
nathematician	0.264
actor	0.265
nusician	0.280
actress	0.286
poets	0.287
aureate	0.289
statesman	0.290

http://projector.tensorflow.org/

word2vec

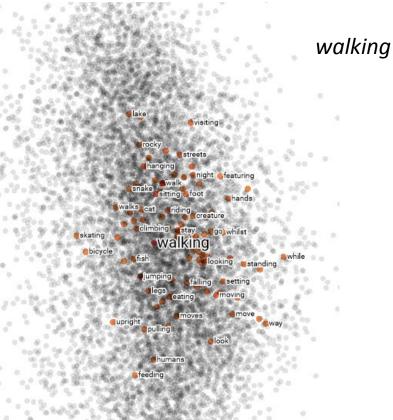


http://projector.tensorflow.org/

Nearest points in the original space:

cats	0.290
dog	0.352
dogs	0.388
pet	0.395
overs	0.401
animal	0.416
breed	0.416
black	0.418
fish	0.423
breeds	0.425
big	0.428
walking	0.428
bat	0.436
bird	0.438
ike	0.444
devil	0.447
hat	0.448

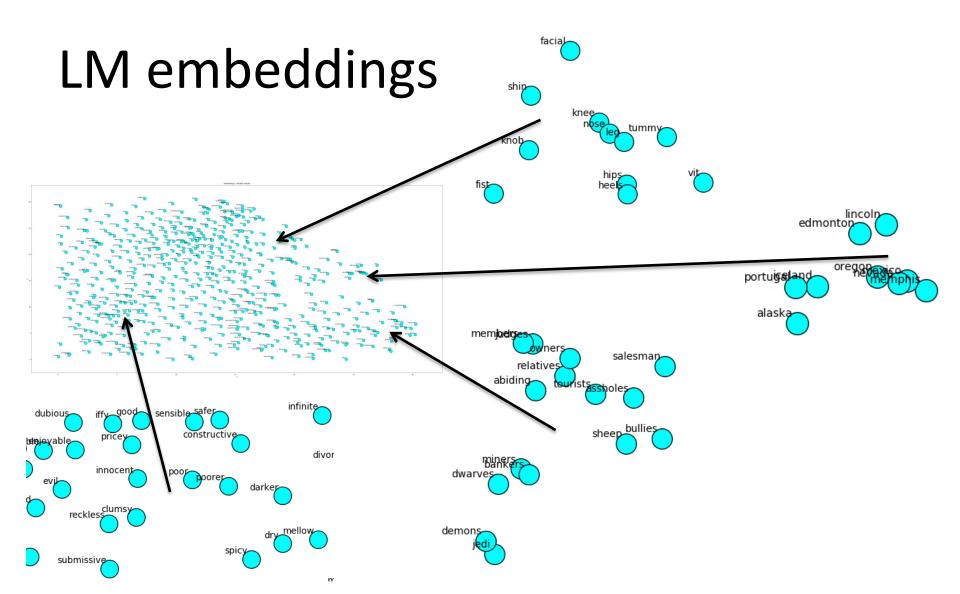
word2vec



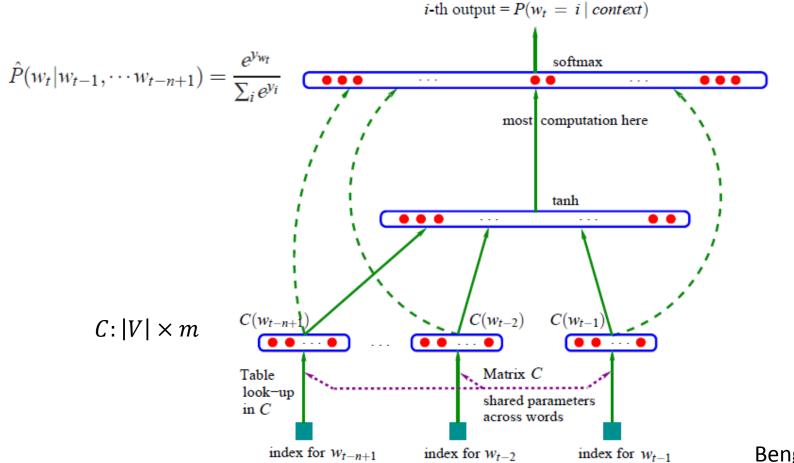
Nearest points in the original space:

valk		0.349
umping		0.386
itting		0.386
treets		0.395
noving		0.399
iding		0.406
limbing		0.406
ooking		0.407
tay		0.418
ating		0.426
egs		0.427
ight		0.427
alling		0.428
at		0.428
earby		0.428
oing		0.430
ed		0.430

http://projector.tensorflow.org/



NN LM



Bengio et al. 2003

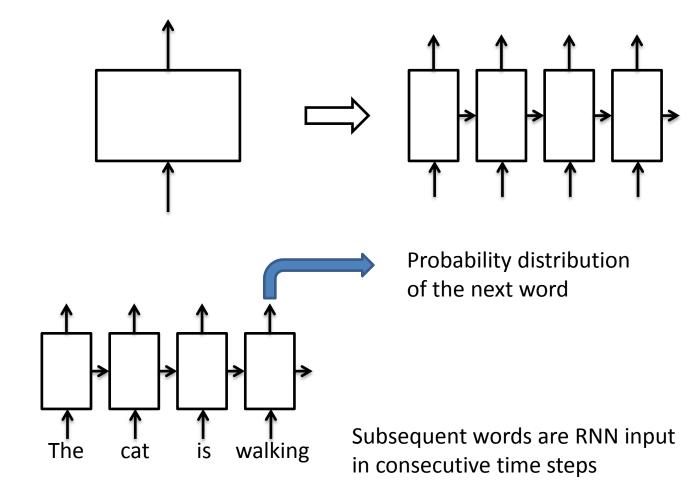
Training NN LM

- We want the model to learn the probability distribution $p(w_t|w_{t-1}, w_{t-2}, \dots, w_{t-N+1})$
- Backpropagation
- Regularization

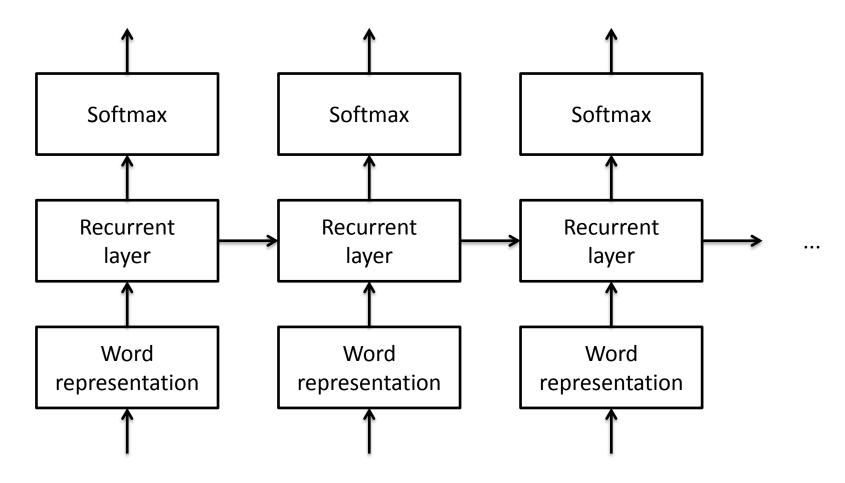
n-gram language models

- Pros: good scalability, speed
- Cons:
 - sparsity / short context:
 for larger n many n-grams will not be present
 in the corpus
 - word similarity is not taken into account:
 e.g. went ↔ gone; cat ↔ dog

RNN-based language models

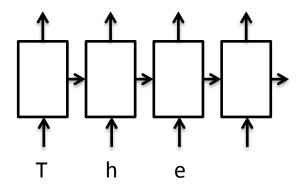


RNN-based language models



RNN-based language models (LSTM)

- Can capture long-term dependencies (not limited to *n* words of context)
- Can work on the level of words, morphemes, characters...



PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

Clown:

Come, sir, I will make did behold your worship.

VIOLA:

I'll drink it.

For $\bigoplus_{n=1,\dots,m}$ where $\mathcal{L}_{m_{\bullet}} = 0$, hence we can find a closed subset \mathcal{H} in \mathcal{H} and any sets \mathcal{F} on X, U is a closed immersion of S, then $U \to T$ is a separated algebraic space.

Proof. Proof of (1). It also start we get

 $S = \operatorname{Spec}(R) = U \times_X U \times_X U$

and the comparicoly in the fibre product covering we have to prove the lemma generated by $\coprod Z \times_U U \to V$. Consider the maps M along the set of points Sch_{fppf} and $U \to U$ is the fibre category of S in U in Section, ?? and the fact that any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any open subset $W \subset U$ in Sh(G) such that $Spec(R') \to S$ is smooth or an

 $U = \bigcup U_i \times_{S_i} U_i$

which has a nonzero morphism we may assume that f_i is of finite presentation over S. We claim that $\mathcal{O}_{X,x}$ is a scheme where $x, x', s'' \in S'$ such that $\mathcal{O}_{X,x'} \to \mathcal{O}'_{X',x'}$ is separated. By Algebra, Lemma ?? we can define a map of complexes $\operatorname{GL}_{S'}(x'/S'')$ and we win.

To prove study we see that $\mathcal{F}|_U$ is a covering of \mathcal{X}' , and \mathcal{T}_i is an object of $\mathcal{F}_{X/S}$ for i > 0 and \mathcal{F}_p exists and let \mathcal{F}_i be a presheaf of \mathcal{O}_X -modules on \mathcal{C} as a \mathcal{F} -module. In particular $\mathcal{F} = U/\mathcal{F}$ we have to show that

$$\overline{M}^{\bullet} = \mathcal{I}^{\bullet} \otimes_{\text{Spec}(k)} \mathcal{O}_{S,s} - i_X^{-1} \mathcal{F})$$

is a unique morphism of algebraic stacks. Note that

Arrows =
$$(Sch/S)_{fppf}^{opp}$$
, $(Sch/S)_{fppf}$

and

$$V = \Gamma(S, O) \longmapsto (U, \operatorname{Spec}(A))$$

is an open subset of X. Thus U is affine. This is a continuous map of X is the inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets.

The result for prove any open covering follows from the less of Example ??. It may replace S by $X_{spaces, ctale}$ which gives an open subspace of X and T equal to S_{Zar} , see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically regular over S.

Andrej Karpathy blog

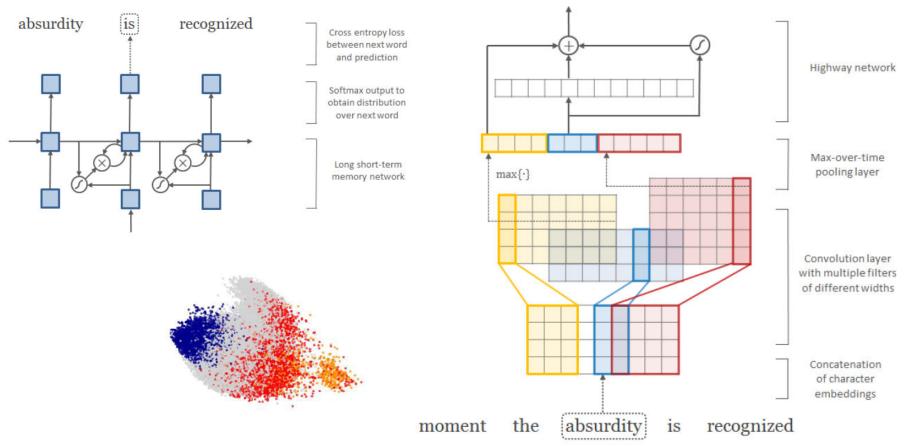
< S > With even more new technologies coming onto the market quickly during the past three years, an increasing number of companies now must tackle the ever-changing and ever-changing environmental challenges online . < S > Check back for updates on this breaking news story . < S > About 800 people gathered at Hever Castle on Long Beach from noon to 2pm, three to four times that of the funeral cortège . < S > We are aware of written instructions from the copyright holder not to, in any way, mention Rosenberg's negative comments if they are relevant as indicated in the documents ," eBay said in a statement . < S > It is now known that coffee and cacao products can do no harm on the body . < S > Yuri Zhirkov was in attendance at the Stamford Bridge at the start of the second half but neither Drogba nor Malouda was able to push on through the Barcelona defence.

Jozefowicz et al. 2016

RNN LM – advanced topics

- Character input
- Computing embedding on the fly
- Improving word embeddings using morphological constraints
 - Pointer-sentinel model•
 - Hierarchical character-level model•

Character input



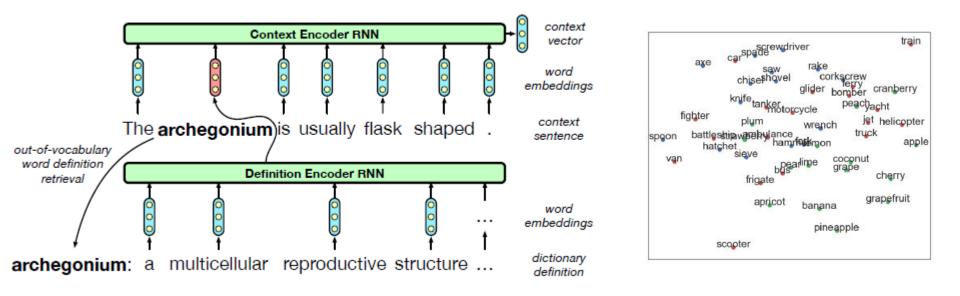
Kim et al. 2016

Character input

	In Vocabulary				Out-of-Vocabulary			
	while	his	уои	richard	trading	computer-aided	misinformed	loooook
LSTM-Word	although	your	conservatives	jonathan	advertised	_	_	_
	letting	her	we	robert	advertising	-	-	_
	though	my	guys	neil	turnover	-	-	_
	minute	their	i	nancy	turnover	-	-	-
	chile	this	your	hard	heading	computer-guided	informed	look
LSTM-Char	whole	hhs	young	rich	training	computerized	performed	cook
(before highway)	meanwhile	is	four	richer	reading	disk-drive	transformed	looks
	white	has	youth	richter	leading	computer	inform	shook
	meanwhile	hhs	we	eduard	trade	computer-guided	informed	look
LSTM-Char	whole	this	your	gerard	training	computer-driven	performed	looks
(after highway)	though	their	doug	edward	traded	computerized	outperformed	looked
	nevertheless	your	i	carl	trader	computer	transformed	looking

Kim et al. 2016

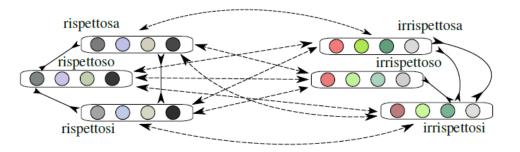
Calculating embeddings on the fly



Bahdanau et al. 2017

Improving word embeddings

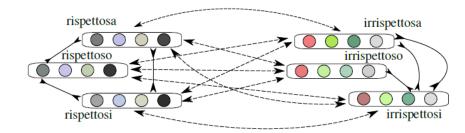
- Problems with word representation in morphologically rich languages:
 - learning representation for infrequent words (each form – separate token)
 - morfology and word meaning



Vulić et al. 2017

Improving word embeddings

- Improving word embeddings
 with attract-repel pairs
 discuss ↔ discussed, laugh ↔ laughing,
 dressed ↔ undressed, formality ↔ informality
- Pairs found using morphological rules, e.g. suffix s, ed, ing; prefix dis, un, in, anti



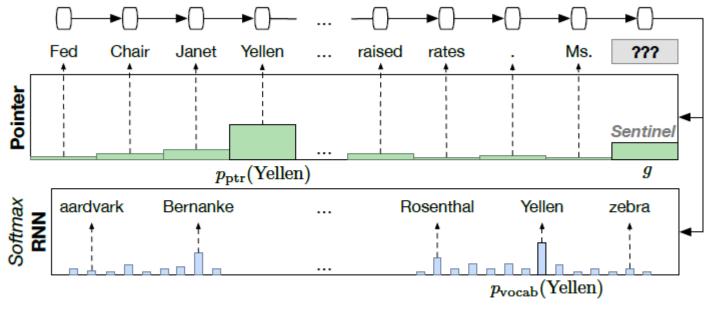
Vulić et al. 2017

Improving word embeddings

en_expensive	de_teure	it_costoso	en_slow	de_langsam	it_lento	en_book	de_buch	it_libro
costly	teuren	dispendioso	fast	allmählich	lentissimo	books	sachbuch	romanzo
costlier	kostspielige	remunerativo	slowness	rasch	lenta	memoir	buches	racconto
cheaper	aufwändige	redditizio	slower	gemächlich	inesorabile	novel	romandebüt	volumetto
prohibitively	kostenintensive	rischioso	slowed	schnell	rapidissimo	storybooks	büchlein	saggio
pricey	aufwendige	costosa	slowing	explosionsartig	graduale	blurb	pamphlet	ecclesiaste
expensiveness	teures	costosa	slowing	langsamer	lenti	booked	bücher	libri
costly	teuren	costose	slowed	langsames	lente	rebook	büch	libra
costlier	teurem	costosi	slowness	langsame	lenta	booking	büche	librare
ruinously	teurer	dispendioso	slows	langsamem	veloce	rebooked	büches	libre
unaffordable	teurerer	dispendiose	idle	langsamen	rapido	books	büchen	librano

Vulić et al. 2017

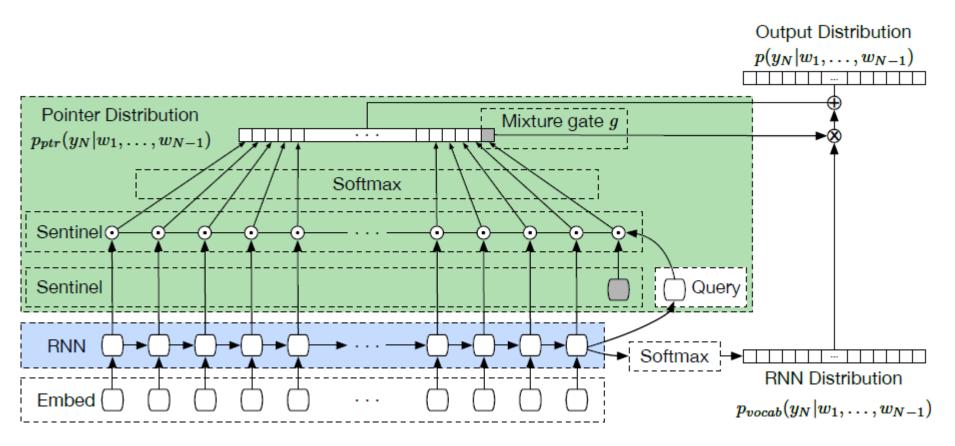
Pointer-sentinel model



 $p(\text{Yellen}) = g \ p_{\text{vocab}}(\text{Yellen}) + (1 - g) \ p_{\text{ptr}}(\text{Yellen})$

Merity et al. 2016

Pointer-sentinel model



Merity et al. 2016

Pointer-sentinel model

Predicting rosenthal using 100 words of history (gate = 0.00)

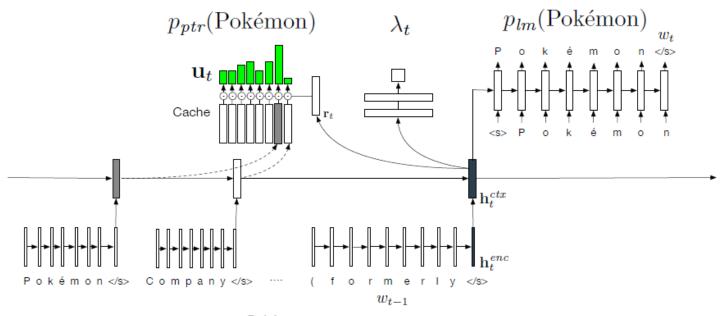
23652303

Predicting noriega using 100 words of history (gate = 0.12)

Merity et al. 2016

Hierarchical character-level model

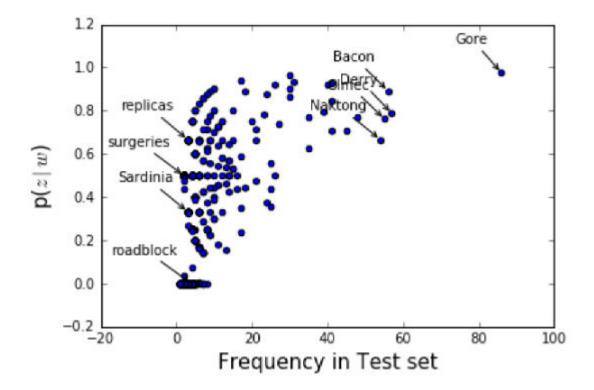
 $p(\text{Pokémon}) = \lambda_t p_{lm}(\text{Pokémon}) + (1 - \lambda_t) p_{ptr}(\text{Pokémon})$



The Pokémon Company International (formerly Pokémon USA Inc.), a subsidiary of Japan's Pokémon Co., oversees all Pokémon licensing ...

Kawakami et al. 2017

Hierarchical character-level model



Kawakami et al. 2017

References

- 1. <u>A neural probabilistic language model</u>, Bengio et al., 2003
- 2. Exploring the Limits of Language Modeling, Jozefowicz et al., 2016, arXiv:1602.02410
- 3. <u>Character-Aware Neural Language Models</u>, Kim et al., 2016
- 4. Learning to Compute Word Embeddings on the Fly, Bahdanau et al., 2017, arXiv:1706.00286
- 5. Morph-fitting: Fine-Tuning Word Vector Spaces with Simple Language-Specific Rules, Vulić et al., 2017, arXiv:1706.00377
- 6. Pointer Sentinel Mixture Models, Merity et al., 2016, arXiv:1609.07843
- 7. Learning to Create and Reuse Words in Open-Vocabulary Neural Language Modeling, Kawakami et al., 2017, arXiv:1704.06986