

Recognition of Emotions and Abusive Language in Texts: Machine Learning Models and Their Interpretability

APPLICA.AI

Recognition of Emotions and Abusive Language in Texts - Machine Learning Models and Their Interpretability

Anna Wróblewska - Ass. Prof. @ WUT, Senior Data Scientist @ Applica.ai

Paweł Pollak, Michał Mierzyński, Łukasz Dragan - former MSc Students @ WUT

Dawid Lipiński - Linguist @ Applica.ai

& Team @ Applica.ai

Anna

- 2008 PhD image recognition, Elka WUT
- Mainly R&D
 - SYNAT, semantic modeling, WUT
 - Controlled Natural Language, Cognitum
 - Semantic service for COP common operational picture, WAT & ABG
- Allegro, Senior Data Scientist, 4 years
- Applica.ai, deep text modeling
- •MIS WUT, data science, www.datascience.edu.pl
- Postgraduate Data Science WUT
- · Industrial PhD programme, cooperation with industry: Applica.ai,

Liliana Pięta Allegro

Prof. Sylwia Sysko-Romańczuk Business School WUT

FINDWISEPaweł Wróblewski

Prof. Przemek Biecek, MIS WUT

Sylwia Grodecka ARETE Relationships development

Agenda

- 1. Use Cases
- 2. Annotating data challenges
- 3. Machine learning models
- 4. Evaluation & interpretability

Business Use Cases

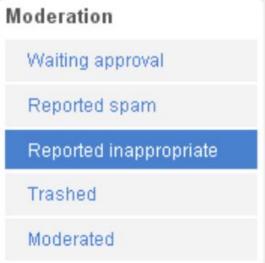
We need to understand the real meaning of texts - semantics AUTOMATICALLY

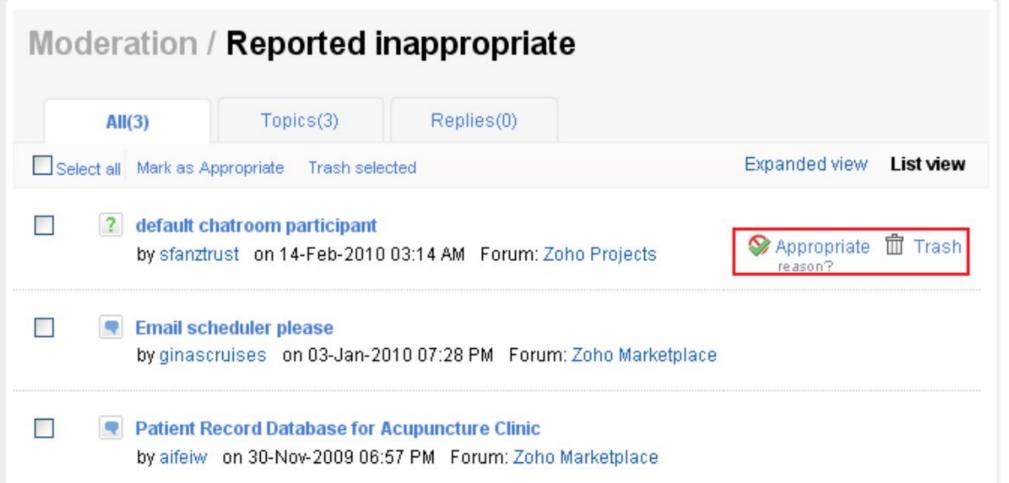
To better adjust content to the user or text/ads owners, to remove unwanted content, to understand intentions etc.

Use Cases

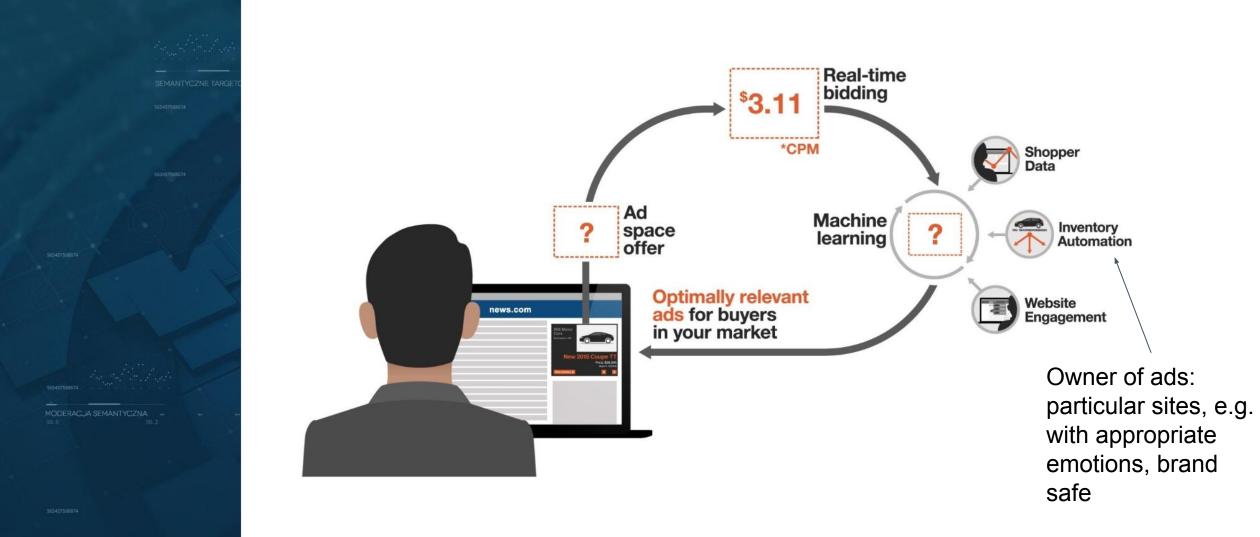
- Portal moderation: users comments
- RTB advertisements
- Behavioral personalisation
- Mood in social media, regarding any brand, event etc.

• Emotions, hate speech





Real Time Bidding / Programmatic Ads



Behavioral personalisation

- Usual mood, texts / sites that are read by a user
- Adapt communication language to be understood better

or manipulate :-(

- Ethical issues!

0	Openness to Experience	High Imaginative	Low Conventional
С	Conscientiousness	High Organized	Low Spontaneous
Ε	Extraversion	High Outgoing	Low Solitary
Α	Agreeableness	High Trusting	Low Competitive
N	Neuroticism	High Prone to stress	Low Emotionally stable

Ways to work on use cases

- Sentiment, emotions

- Offensive language / hate speech

- Named entities, semantic relations between entities

- Synonyms, similar concepts etc.

Text sentiment

- Sentiment positive, neutral, negative
- Deep sentiment / Emotion recognition Emotions expressed in texts

Text

Emotions expressed

Nie spodziewałem się, że to będzie takie

fajne!

I did not expect that it would be so cool!

Joy / Surprise

Emotion theories

Plutchik (1960-1980)

- 1. Anticipation
- 2. **Joy**
- 3. **Sadness**
- 4. Fear
- 5. **Trust**
- 6. **Disgust**
- 7. Surprise
- 8. Anger

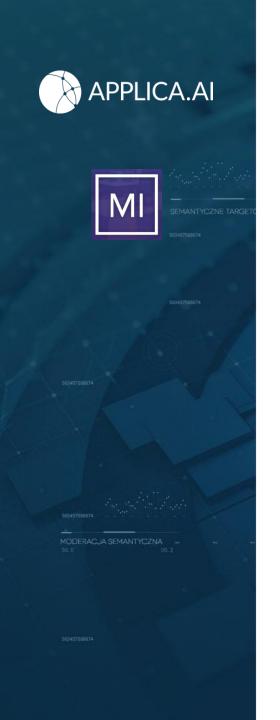
Ekman

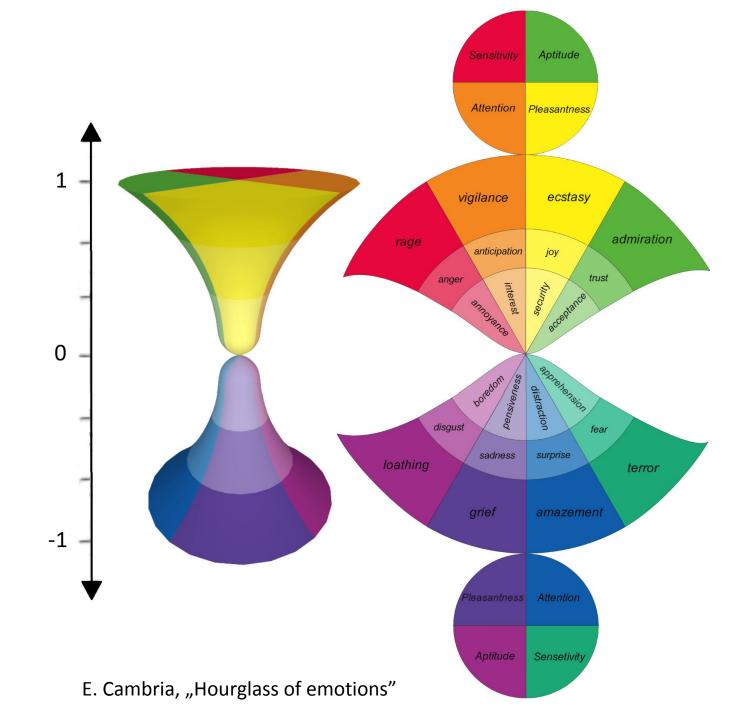
- 1. Joy
- 2. Sadness
- 3. Fear
- Disgust (revulsion)
- 5. Anger
- 6. Surprise

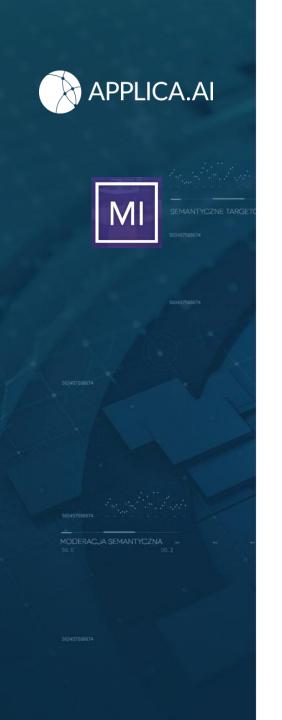
Nakurama

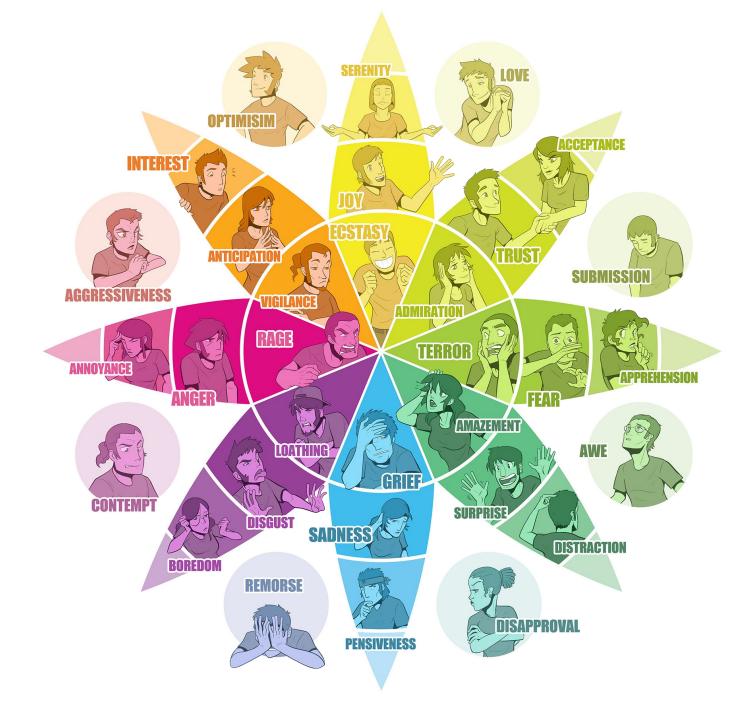
+ Shame emotion

WARSAW UNIVERSITY OF TECHNOLOGY





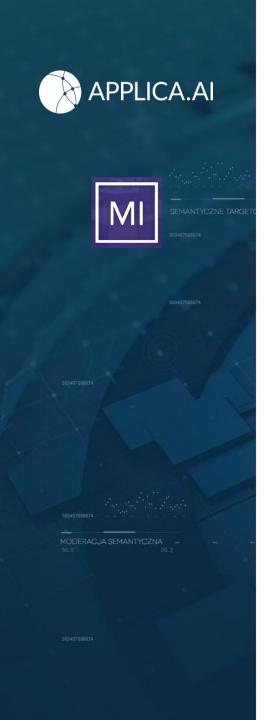




Abusive language

	Explicit	Implicit		
Directed	"Go kill yourself", "You're a sad little f*ck" (Van Hee et al., 2015a),	"Hey Brendan, you look gorgeous today. What beauty salon did you		
	"@User shut yo beaner ass up sp*c and hop your f*ggot ass back across	visit?" (Dinakar et al., 2012),		
	the border little n*gga" (Davidson et al., 2017),	"(((@User))) and what is your job? Writing cuck articles and slurping		
	"Youre one of the ugliest b*tches Ive ever fucking seen" (Kontostathis	Google balls? #Dumbgoogles" (Hine et al., 2017),		
	et al., 2013).	"you're intelligence is so breathtaking!!!!!" (Dinakar et al., 2011)		
Generalized	"I am surprised they reported on this crap who cares about another dead	"Totally fed up with the way this country has turned into a haven for		
	n*gger?", "300 missiles are cool! Love to see um launched into Tel Aviv!	terrorists. Send them all back home." (Burnap and Williams, 2015),		
	Kill all the g*ys there!" (Nobata et al., 2016),	"most of them come north and are good at just mowing lawns" (Dinakar		
	"So an 11 year old n*gger girl killed herself over my tweets? ^_ ^ thats	et al., 2011),		
	another n*gger off the streets!!" (Kwok and Wang, 2013).	"Gas the skypes" (Magu et al., 2017)		

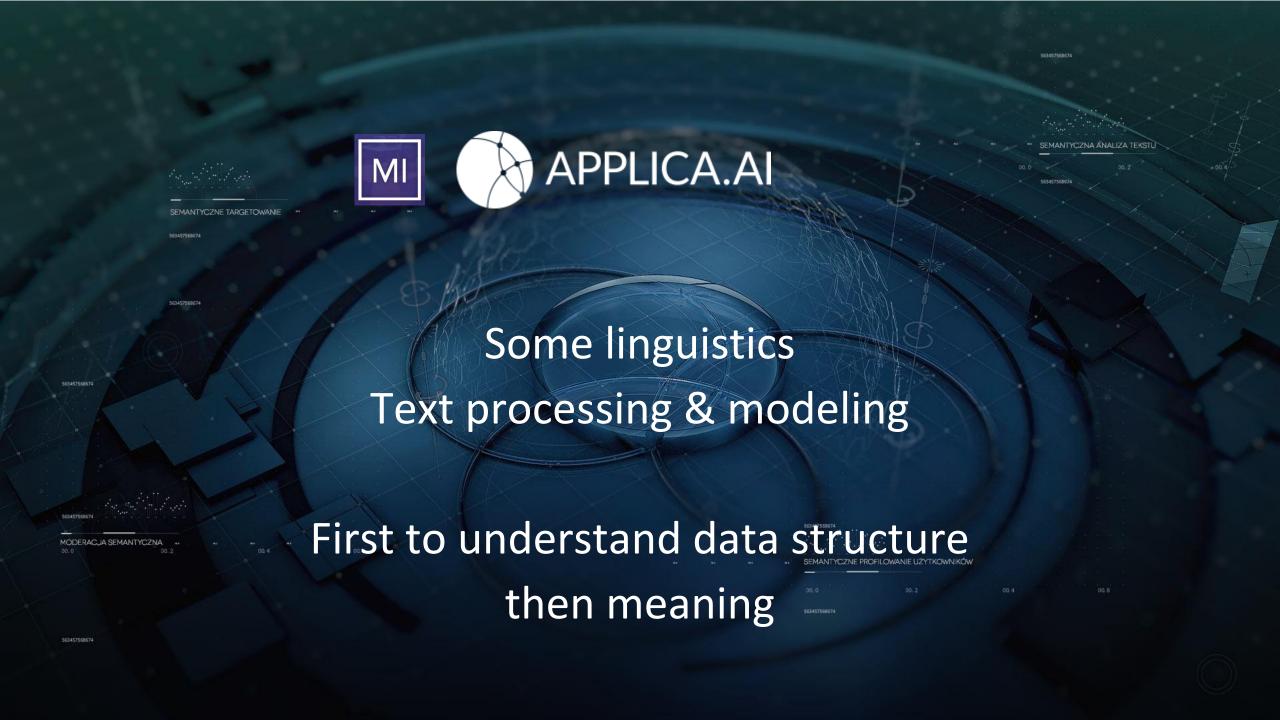
Z. Wassem: Understanding Abuse: A Typology of Abusive Language Detection Subtasks, Proc. of Workshop on Abusive Lang. 2017, ACL



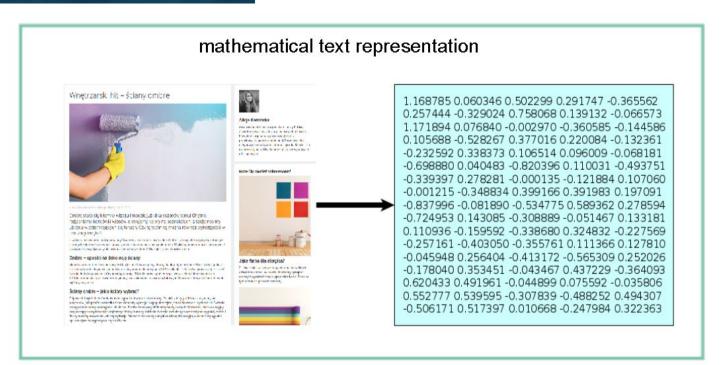
Hate speech

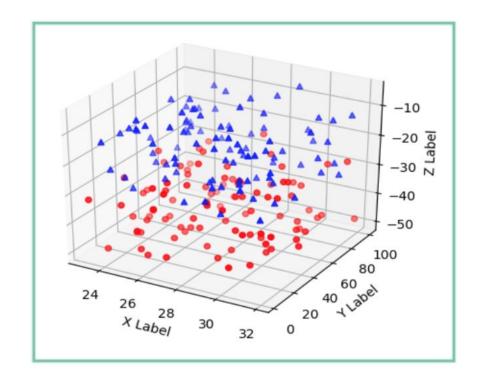
Language that is used to **expresses hatred** towards a **targeted group** or is intended to be derogatory, to humiliate, or to insult the members of the group

GENERALIZED EXPLICIT or IMPLICIT

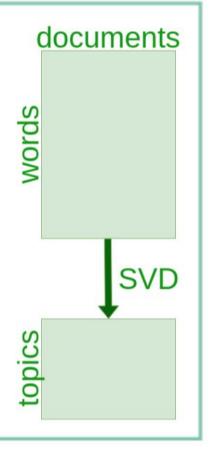


Text processing pipeline



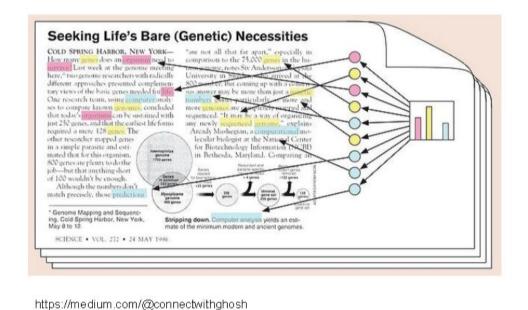


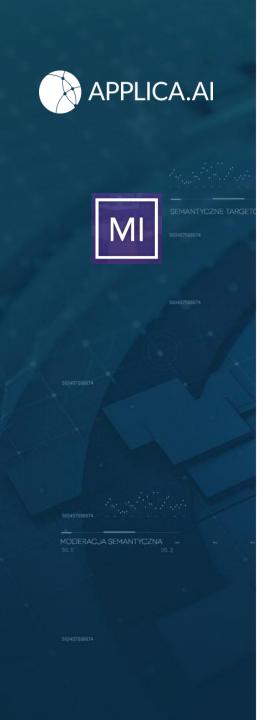
Latent semantic indexing
Groups words into topics using Singular
Value Decomposition



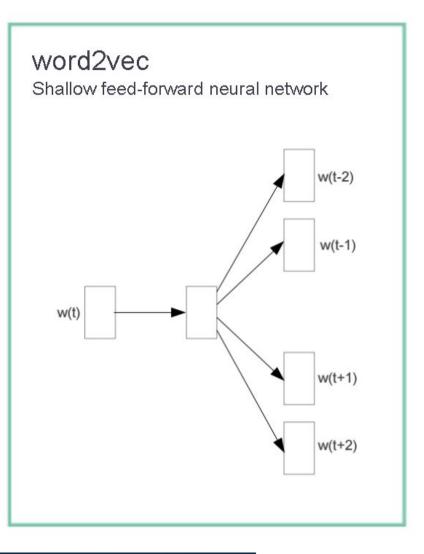
Latent Dirichlet allocation

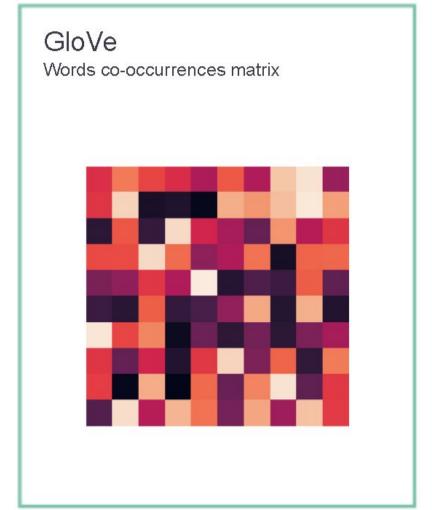
Represents documents as mixtures of topics that are probability distributions over words

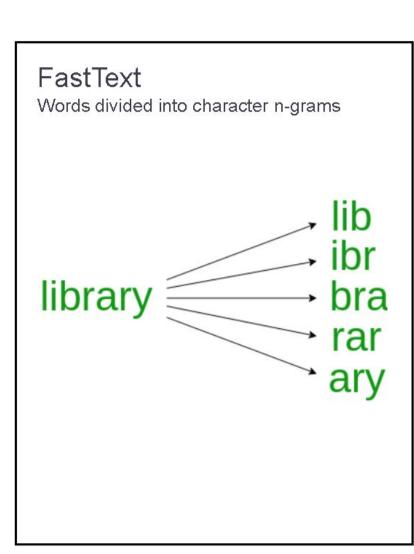


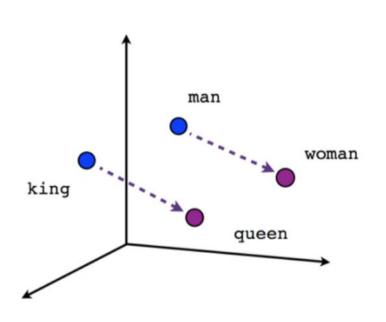


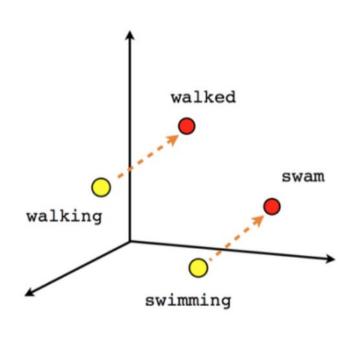
Distributional techniques main assumption: Any word is determined based on its context

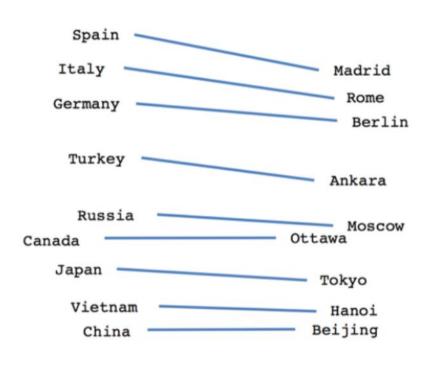












Male-Female

Verb tense

Country-Capital

Text annotation

- Even for linguists can be a very difficult task to differentiate between classes (emotions expressed etc.)
- Tedious, costly task
- Applica.ai has dedicated platform to annotation processes (organize works of linguists, get metrics of work, and annotated texts etc.)

The challenge is to annotate less data and to get the best results

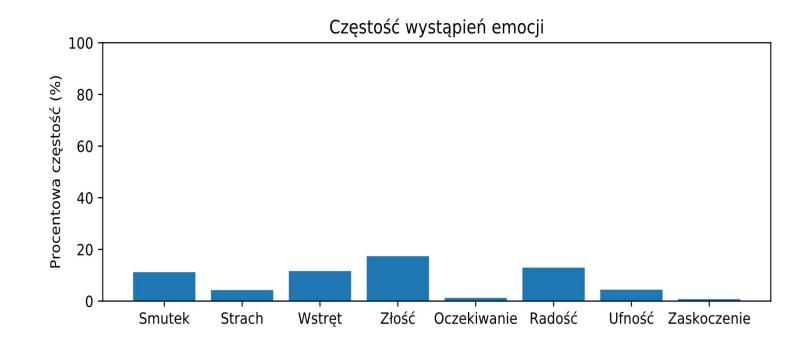
Annotations de surface

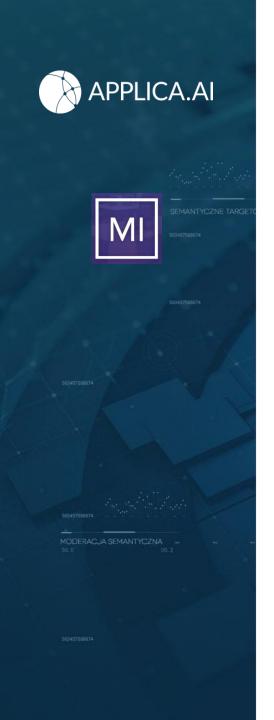
Groupes et types **◊**

https://prodi.gy/demo?view_id=textcat

Source texts to annotate emotions

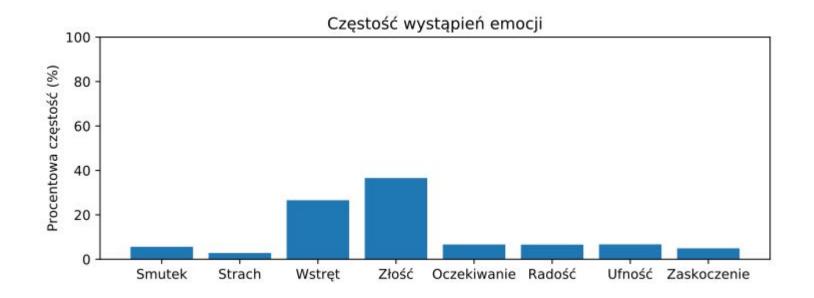
- Wordnet.pl by Wrocław University of Technology
 - Emotions assigned to lexical units, having exemplar sentences
 - + neutral sentences, without emotions
 - about 30 000 sentences





Source texts 2

- Comments and articles from information portals
- Annotation by linguists
- About 2 000 texts



Annotation for emotions interface

Tekst komentarza:

dieta musi być racjonalna wtedy jesteśmy zdrowe i ładnie wyglądamy, dieta to sposób żywienia. To bardzo wazne aby robić to z głową. Poczytajcie sobie książkę Odchudzanie z elementami fizjologii i biochemii. Tam są informacje , które diety są niezdrowe i dlaczego, jakie spustoszenie sieją w organizmie, ale przede wszystkim dowiesz się jak jeść i ćwiczyć, by zrzucać kilogramy i być zdrowym! ja mam po 8 miesiącach 14 kilo mniej:)

Emocja				
Smutek	• 0	O 1	O 2	O 3
Strach	• 0	O 1	O 2	O 3
Wstręt	• 0	O 1	O 2	O 3
Złość	• 0	O 1	O 2	O 3
Oczekiwanie	• 0	O 1	O 2	O 3
Radość	• 0	O 1	O 2	O 3
Ufność	• 0	O 1	O 2	O 3
Zaskoczenie	• 0	O 1	O 2	O 3

Text processing in the framework

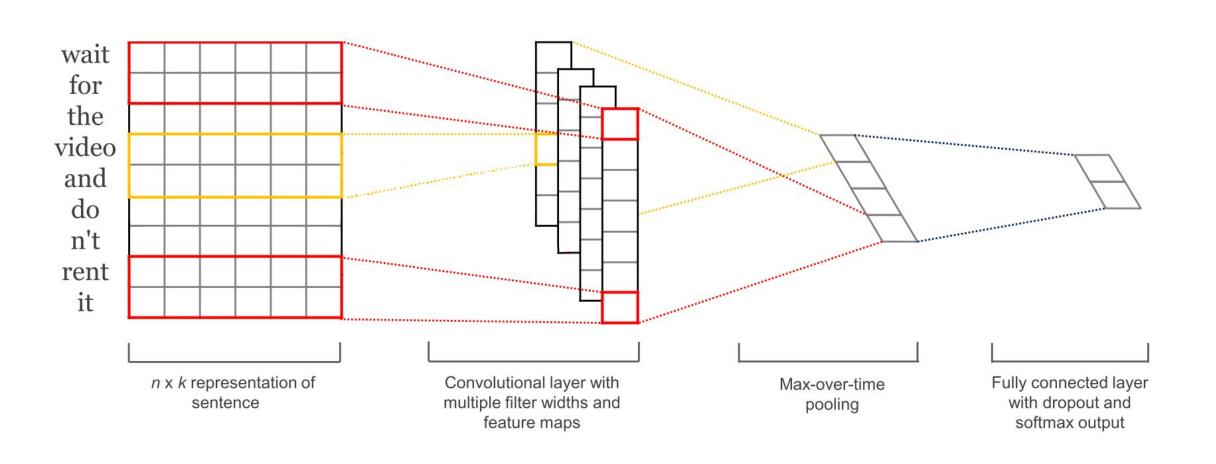
Jestem dumny z adekwatności twojego zachowania do tej sytuacji.

I am proud of the adequacy of your behavior to this situation.

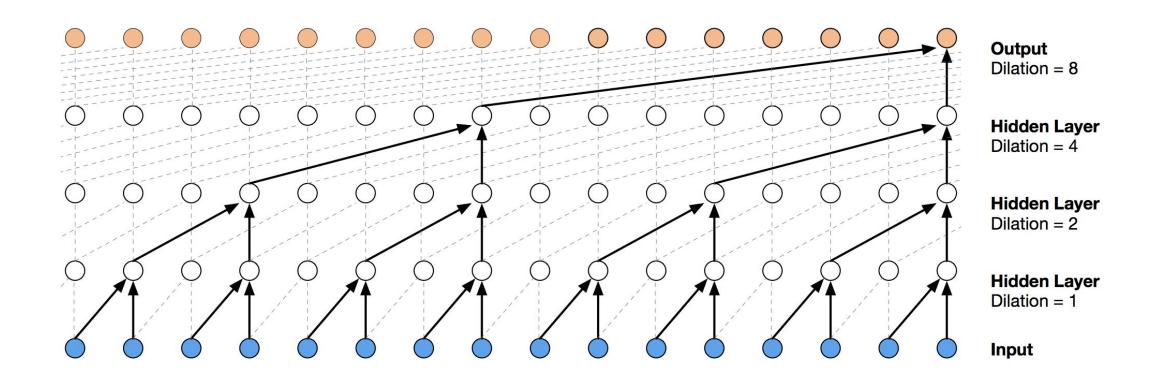

```
["być", "dumny", "z", "adekwatność", "twój", "zachowanie", "do", "ten", "sytuacja", "."]
```

LEMMAS - base forms

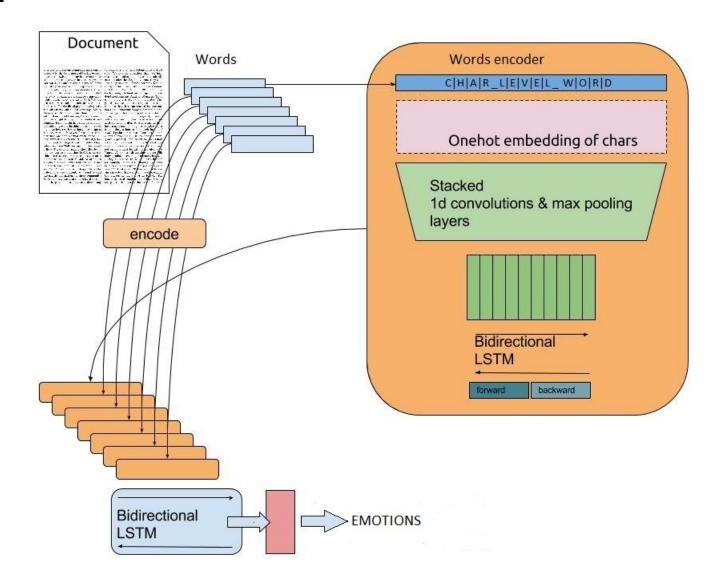
CNN - Convolutional Neural Network



TCN - Temporal Convolutional Network



LSTM

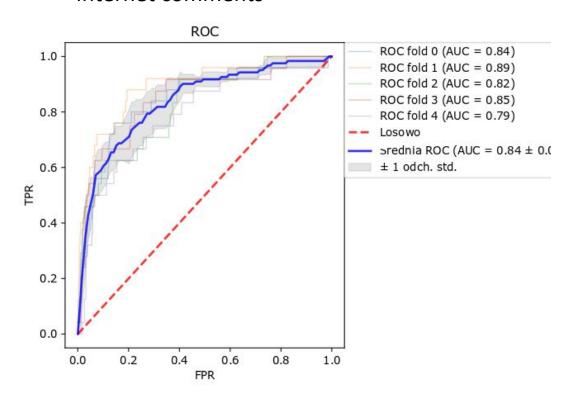


Evaluation measures

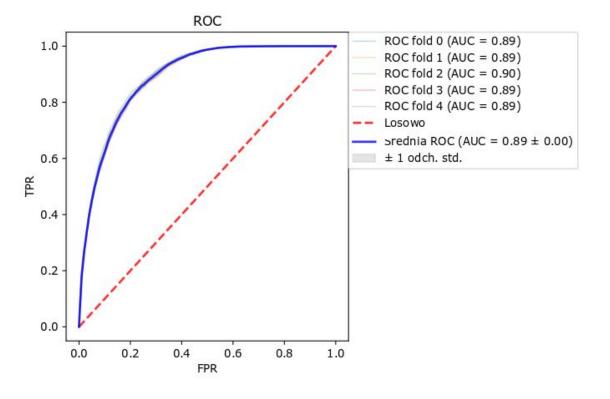
- AUC/ROC
 - Not dependent on threshold for decision making
- F1 precision / recall
 - Depends on balance on test dataset
- Kappa Cohena
 - Agreement of 2 observers
 - But good model has not the same value of the metric
 - Random classifier has 0-value metric
- Precision@10%
 - Depends on the balance on test set

ROC/AUC - Joy

Internet comments

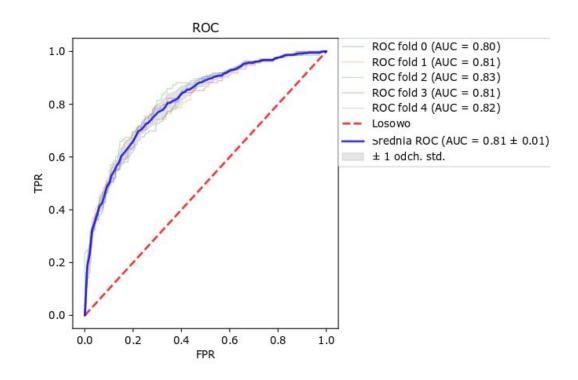


WordNet.pl

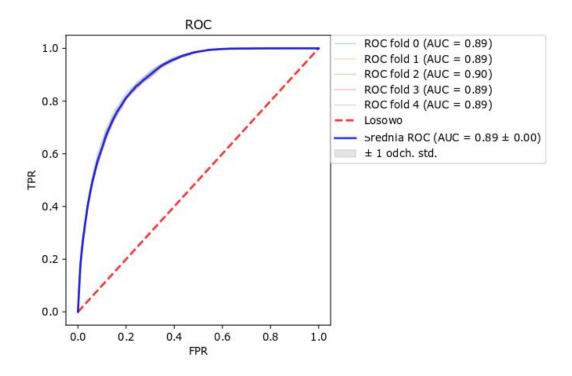


ROC/AUC - Anger

Internet comments



WordNet.pl



Best models for emotions

•	C	N	N	
---	---	---	---	--

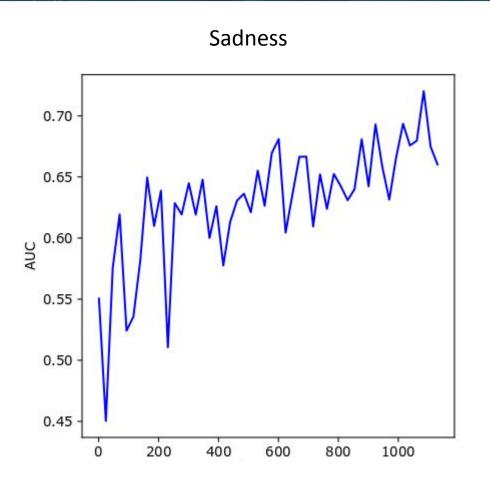
 Models based on chars need bigger datasets

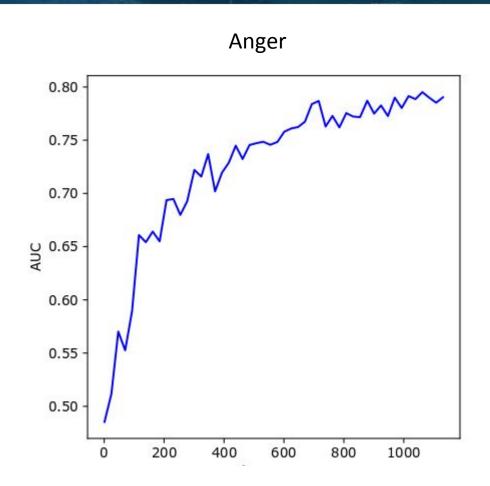
AUC [std. dev. on folds]

Dataset

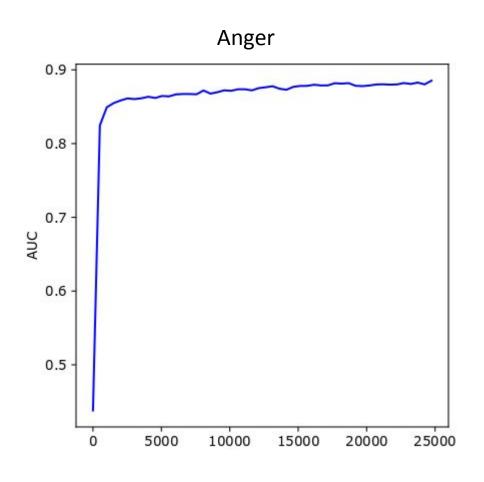
Emotion	_ 3.33.3 3 3				
Emotion	Comments	WordNet.pl			
Sadness	0.657 [0.054]	0.840 [0.002]			
Fear	0.791 [0.069]	0.846 [0.006]			
Disgust	0.820 [0.042]	0.877 [0.005]			
Anger	0.813 [0.009]	0.891 [0.003]			
Anticipation	0.604 [0.058]	0.813 [0.007]			
Joy	0.839 [0.034]	0.891 [0.003]			
Trust	0.778 [0.043]	0.852 [0.005]			
Surprise	0.695 [0.031]	0.803 [0.021]			
Negative	0.830 [0.025]	0.948 [0.004]			
Positive	0.822 [0.035]	0.903 [0.005]			

Quality of classification results depends on size of training dataset - comments dataset





Quality of classification results depends on size of training dataset - WordNet.pl dataset

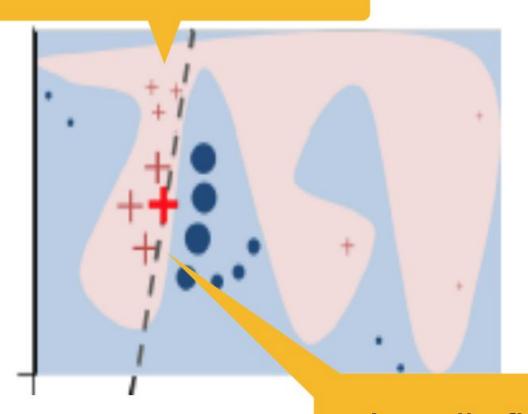


LIME

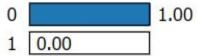
Ribeiro '2016

 Local Interpretable Model-agnostic Explanations Want local explanation

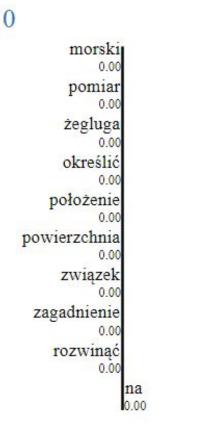
of the + data point



Locally fitted linear function

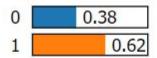


Model: Is any emotion expressed in the text or not?

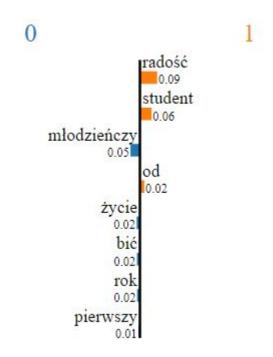


Text with highlighted words trygonometria powstać i rozwinąć się głównie w związek z zagadnienie pomiar na powierzchnia Ziemia oraz potrzeba żegluga morski (określić położenie i kierunek przy pomoc ciało niebieski).

Trigonometry develops due to measurements on the surface of the earth....



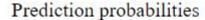
Model: Is joy emotion expressed in the text or not?

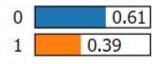


Text with highlighted words

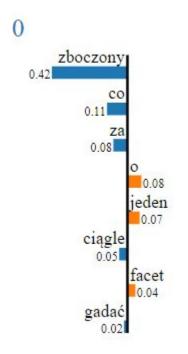
od student pierwszy rok bić młodzieńczy radość życie.

From students in the first year beats the youthful joy of life.





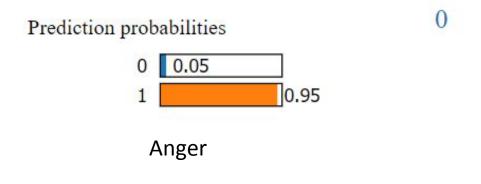
Trust

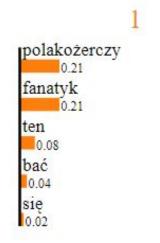


Text with highlighted words

co za zboczony facet, ciągle gadać o jeden.

What a perverted guy who is constantly talking about the only one.





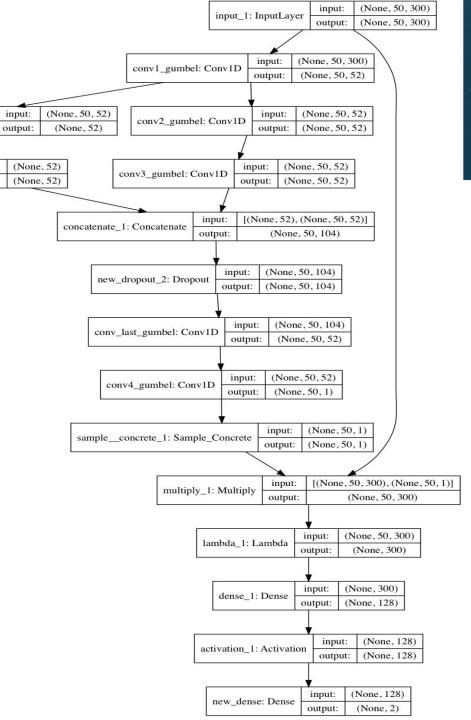
Text with highlighted words bać się ten polakożerczy fanatyk.

I'm afraid of this fanatic who has Poles for the prey.

L2X new_global_max_pooling1d_1: GlobalMaxPooling1D

Chen Jianbo, ...: An Information-Theoretic Perspective on Model Interpretation, ICML 2018

20% improvement in measures on our datasets



input:

new_dense_1: Dense

L2X for trust model - TP

Cieszę się z obrotności mojej córki. I am happy for my daughter's agility.

Dobry nauczyciel powinien być sprawiedliwy!
A good teacher should be just!

Abusive Language - English datasets

Twitter1

- About 25k tweets
- Classes: offensive language 76% / non-offensive 19% / hate speech 5%
- "Automated Hate Speech Detection and the Problem of Offensive Language", ICWSM 2017

Twitter 2

- About 13K tweets
- Classes: racist 12% / sexist 20% / non-offensive 68%
- "Deep Learning for Hate Speech Detection in Tweets" WWW 2017

Models

- LSTM
- CNN
- FastText classifier
- XGBoost

- Inputs are language model vectors - embeddings

Twitter1

Metoda	Precision	Recall	F1	Kappa Cohena	AUC
ICML 2018	0.910	0.900	0.900	-	-
${f LSTM} + {f rand} + {f GBDT}$	0.942 [0.003]	0.942 [0.003]	0.942 [0.003]	0.838 [0.008]	0.971 [0.002]
LSTM + Glove + GBDT	0.913 [0.005]	0.913 [0.005]	0.913 [0.005]	0.746 [0.014]	0.949 [0.005]
CNN + rand + GBDT	0.940 [0.003]	0.940 [0.003]	0.940 [0.003]	0.832 [0.009]	0.972 [0.003]
CNN + Glove + GBDT	0.907 [0.005]	0.907 [0.005]	0.907 [0.005]	0.727 [0.016]	0.941 [0.005]
fastText + rand + GBDT	0.919 [0.004]	0.919 [0.004]	0.919 [0.004]	0.772 [0.010]	0.956 [0.004]

Unbalanced datasets

- Reduction of the biggest class
- Scaling the smaller class
- Leave as in the distribution of domain
- Merging negative classes

Reducing the biggest class

Zbiór	Precision	Recall	F1	Kappa Cohena	AUC
twitter1 full	0.911 [0.006]	0.898 [0.007]	0.904 [0.006]	$0.728 \ [0.020]$	0.930 [0.010]
twitter 1	0.887 [0.007]	0.869 [0.007]	0.878 [0.007]	$0.752 \ [0.015]$	0.931 [0.010]
twitter2 full	0.832 [0.007]	0.822 [0.008]	0.827 [0.007]	0.627 [0.018]	0.914 [0.006]
twitter 2	0.811 [0.014]	0.794 [0.013]	0.803 [0.013]	$0.674 \ [0.022]$	$0.924 \ [0.007]$
polishData full	$0.822 \ [0.002]$	0.820 [0.002]	0.821 [0.002]	0.490 [0.009]	0.883 [0.003]
polishData	0.767 [0.004]	0.762 [0.005]	0.764 [0.004]	0.567 [0.008]	0.890 [0.003]

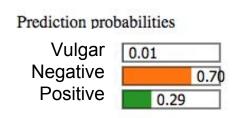
Weighting the smaller classes

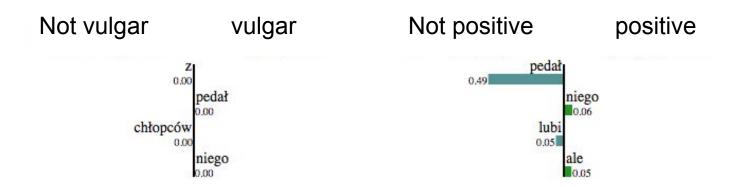
Zbiór	Precision	Recall	F1	Kappa Cohena	AUC
twitter1 full	0.911 [0.006]	0.898 [0.007]	0.904 [0.006]	0.728 [0.020]	0.930 [0.010]
twitter1	0.891 [0.005]	0.889 [0.005]	0.890 [0.005]	0.648 [0.023]	0.923 [0.008]
twitter2 full	0.832 [0.007]	0.822 [0.008]	0.827 [0.007]	0.627 [0.018]	0.914 [0.006]
twitter 2	0.804 [0.020]	0.802 [0.019]	0.803 [0.019]	0.522 [0.066]	0.911 [0.008]
$polishData\ full$	$0.822 \ [0.002]$	0.820 [0.002]	0.821 [0.002]	0.490 [0.009]	0.883 [0.003]
polishData	0.804 [0.001]	0.802 [0.002]	0.803 [0.002]	0.333 [0.008]	0.880 [0.002]

Merging classes

Zbiór	Precision	Recall	F1	Kappa Cohena	AUC
twitter1 full	0.911 [0.006]	0.898 [0.007]	0.904 [0.006]	0.728 [0.020]	0.930 [0.010]
twitter1	0.950 [0.005]	0.950 [0.005]	0.950 [0.005]	$0.820 \ [0.016]$	0.983 [0.002]
twitter2 full	0.832 [0.007]	0.822 [0.008]	0.827 [0.007]	0.627 [0.018]	0.914 [0.006]
twitter 2	0.835 [0.007]	0.835 [0.007]	0.835 [0.007]	0.617 [0.016]	0.889 [0.008]
$polishData\ full$	0.822 [0.002]	0.820 [0.002]	0.821 [0.002]	0.490 [0.009]	0.883 [0.003]
polishData	$0.824 \ [0.002]$	$0.824 \ [0.002]$	$0.824 \ [0.002]$	0.485 [0.007]	0.851 [0.002]

LIME - offensiveness depends on context



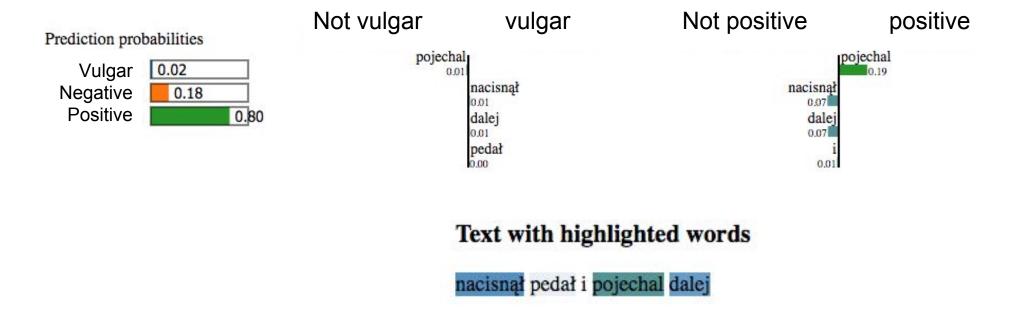


Text with highlighted words

ale z niego pedał. Pewnie lubi chłopców

He is a queer! He probably likes boys.

LIME - the same word but positive context



He pressed the pedal and drove away.

GEVAL

Mann U-Whitney rank test

$$(X, Y, \hat{Y})^{+f}$$
 $(X, Y, \hat{Y})^{-f}$

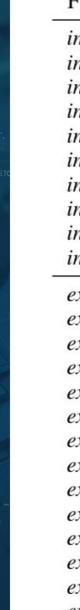
Word	COUNT	+	-	Acc	χ^2	P-VALUE
THOUGH	343	254	89	0.7405	35.2501	0.00000
KNOW	767	619	148	0.8070	13.4284	0.00025
READING	72	57	15	0.7917	2.226	0.1357

Features

- Word
- Bigram
- Cartesian features

Source:

- Input file
- Output
- Expected gold standard



FEATURE	COUNT	Acc	P-VALUE
in<1>:though	343	0.74	0.00004
in < l >: no + + idea	21	0.48	0.001
in<1>:count	16	0.44	0.002
in < 1 >: yeah	227	0.76	0.003
in<1>:know	767	0.81	0.004
in<1>:which	98	0.71	0.006
in < 1 >: what + + the	23	0.56	0.007
in<1>:wouldn't	38	0.68	0.029
in<1>:Haven't	14	0.57	0.030
in<1>:can't++even	12	0.58	0.047
exp:1~~in<1>:sad	13	0.38	0.001
exp:1~in<1>:though	72	0.67	0.002
$exp:1^{\sim}in<1>:can't$	160	0.73	0.002
exp:1~in<1>:never	81	0.67	0.001
$exp:1^{\sim}in<1>:miss$	73	0.34	0.0000
$exp:1^{\sim}in<1>:hate$	43	0.35	0.0000
$exp:1^{\sim}in<1>:but$	549	0.73	0.0000
$exp:1^{\sim}in<1>:not$	395	0.71	0.0000
$exp:1^{\sim}in<1>:no$	196	0.64	0.0000
$exp:1^{\sim}in<1>:wish$	66	0.50	0.0000
exp:1~~in<1>:i	1067	0.77	0.0000
$exp:0^{\sim}in<1>:you$	958	0.77	0.0000
$exp:1^{\sim}in<1>:sorry$	39	0.41	0.0000
$exp:1^{\sim}in<1>:want$	157	0.64	0.0000
$exp:1^{\sim}in<1>:doesn't$	39	0.49	0.0000
$exp:1^{\sim}in<1>:bad$	52	0.56	0.0000

Twitter sentiment

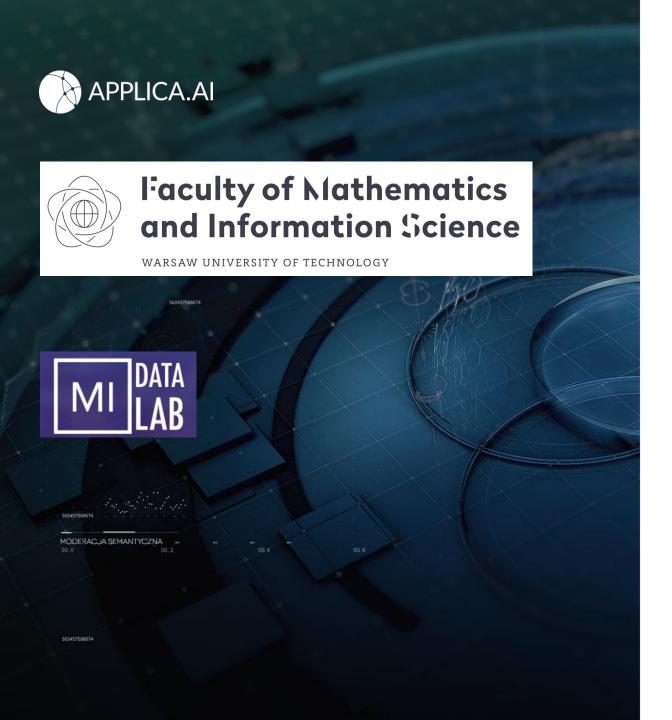
PRE-PROCESSING	OVERALL ACCURACY
NO PREPROCESSING	82.520%
REPLACING "DON'T" WITH "DO NOT" (TRAIN & TEST SAMPLES)	82.575%
CHANGING SENTENCES WITH "BUT" (ONLY TEST SAMPLES)	82.592%

IMDB

FEATURE	COUNT	Acc	P-VALUE
in<1>:now++?	20	0.60	0.003
in<1>:ever++happened	21	0.67	0.014
in<1>:stripped	44	0.75	0.013
in<1>:quite++interesting	28	0.71	0.017
in<1>:weird	513	0.896	0.024
in<1>:would++prefer	13	0.615	0.020
in<1>:objections	13	0.615	0.020
in < l >:DID++NOT	10	0.600	0.030

Challenges

- The most difficult task to define the task :-)
 - Find resources
 - Instruction for linguists
 - Annotating
- Adjust ML to Polish language
 - Need rules for grammar to be correct or preprocessing
 - Extended stopwords lists and reinforcement words lists
 - Complex word interactions



Future works

- Hierarchical models: emotional / not emotional texts
- Transfer learning / concept language modeling
- Topic modeling + Emotion modeling
- Active learning to choose the best sample to annotate