SAMSUNG

Samsung System for Task 5 and Task 6 at SemEval 2019:

Linguistically enhanced deep learning offensive sentence classifier

Dr Alessandro Seganti, Dr Helena Sobol

May 13, 2019 IPI PAN

Introduction State of the Art Embeddings \prod Our approach IV The dataset The models Results VI Conclusions VII

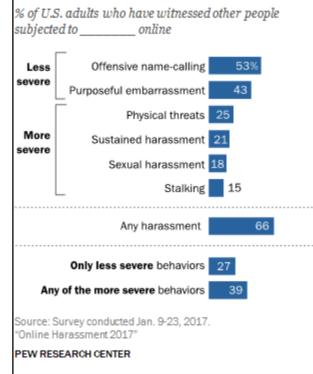
- I Introduction
- State of the Art
- III Embeddings
- IV Our approach
 - I The datasetI The models
- VI Results



PARENTAL ADVISORY EXPLICIT CONTENT

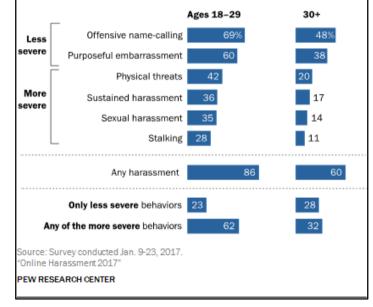
Introduction – The problem

Two-thirds of all adults have witnessed some form of online harassment



Younger adults more likely to witness severe forms of online harassment

% of all adults who witness the following forms of online harassment, by age



Pew Research Center – Online Harrassment 2017

http://www.pewinternet.org/2017/07/11/online-harassment-2017/

Task 5 - hatEval

Multilingual detection of hate speech against immigrants and women in Twitter

- A: predict if a tweet is hateful against women or immigrants.
- B: (1) classify hateful tweets as aggressive or not aggressive; (2) classify the target as individual or group.

Task 6 - OffensEval

Identifying and Categorizing Offensive Language in Social Media

- A: Offensive language identification.
- B: Automatic categorization of offense types: Targeted Insults and Threats vs. Untargeted.
- C: Offense target identification: Individual, Group, Organization or Entity (e.g. a city, a location), Other (e.g. a situation, an event).

- I Introduction
- State of the Art
- III Embeddings
- IV Our approach
 - I The dataset I The models
- VI Results

State of the art – Perspective API

• <u>Perspective API</u> made by Google is an API that developers can use to classify a comment's toxicity.



State of the art – Fooling Perspective API

Pros

- Bias mitigation through data preprocessing.
- Is able to recognize a large fraction of toxic comments.
- Around 95% accuracy.

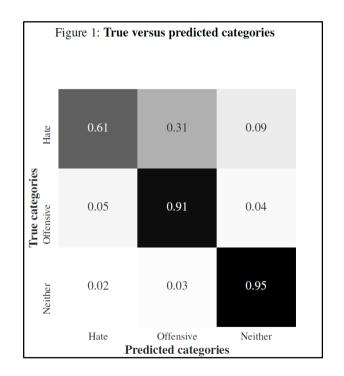
Cons

- Model/Combination of models not available.
- Easily fooled with some tricks.

Original Phrase (Toxicity Score)	Modified Phrase (Toxicity Score)
Climate change is happening and it's not changing in our	Climate change is happening and it's not changing in our
favor. If you think differently you're an idiot. (84%)	favor. If you think differently you're an idiiot. (20%)
They're stupid , it's getting warmer, we should enjoy it while	They're st.upid, it's getting warmer, we should enjoy it
it lasts (86%)	while it lasts (2%)
They are liberal idiots who are uneducated (90%)	They are liberal i.diots who are un.educated (15%)
idiots. backward thinking people. nationalists. not accept-	idiiots. backward thinking people. nationaalists. not accept-
ing facts. susceptible to lies. (80%)	ing facts. susceptible to l.ies . (17%)
They are stupid and ignorant with no class (91%)	They are st.upid and ig.norant with no class (11%)
It's stupid and wrong (89%)	It's stuipd and wrong (17%)
If they voted for Hilary they are idiots (90%)	If they voted for Hilary they are id.iots (12%)
Anyone who voted for Trump is a moron (80%)	Anyone who voted for Trump is a mo.ron (13%)
Screw you trump supporters (79%)	S c r e w you trump supporters (17%)

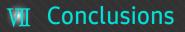
Deceiving Google's Perspective API Built for Detecting Toxic Comments 2017 (<u>https://arxiv.org/pdf/1702.08138.pdf</u>)

- Lexicon from Hatebase.org
- Searched tweets using this lexicon.
- Selected ~25k tweets containing the lexicon and manually coded by crowd workers.
- Model:
 - 1) Logistic regression
 - 2) various models: logistic regression, naive Bayes, decision tree, SVM, ...
 - → finally deciding for logistic regression with L2 regularization.



Automated Hate Speech Detection and the Problem of Offensive Language, Davidson at al., 2017, https://arxiv.org/pdf/1703.04009.pdf

- I Introduction
- State of the Art
- III Embeddings
- IV Our approach
 - I The datasetⅢ The models
 - VI Results



Bad word embeddings

fastText

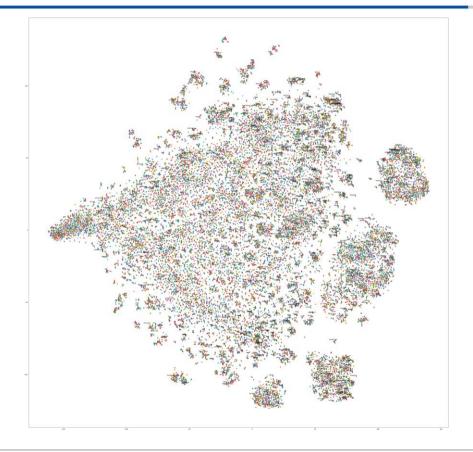
- Dataset: all sentences in the train and dev set.
- Preprocessing
 - Removing links, long words, nicknames, ...
 - Tokenizing using nltk_tokenizer
- Learning a fastText embedding (using subwords).
- Embedding created: 300 dimensions, ~4k words.

ELMo

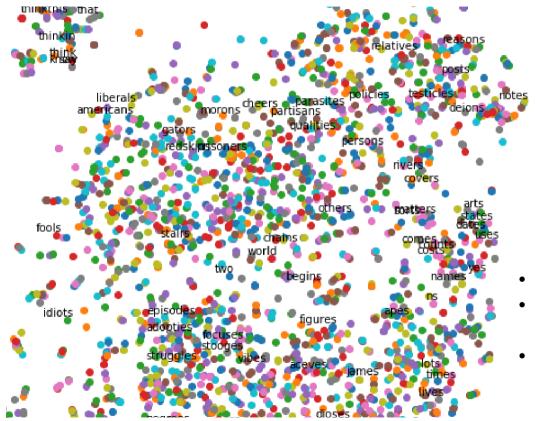
- Pretrained embeddings made from AllenNLP.
- Weighted sum of Bidirectional LSTM hidden state.
- Used through Tensorhub:
 - 3 LSTM layers.
 - Trained on 1 Billion Word benchmark.
 - 1024 dimensions.

(ELMO) Deep contextualized word representations Matthew E. Peters et al. NAACL 2018.

Bad word embeddings - fastText



Bad word embeddings - fastText



- Liberals, americans
- Parasites, partisans, policies
- Idiots, fools

Bias in Embeddings

1. homemaker	2. nurse	3. receptionist		
4. librarian	5. socialite	6. hairdresser		
7. nanny	8. bookkeeper	9. stylist		
10. housekeeper 11. interior designer		12. guidance counselor		
Extreme he occupations				
1. maestro	2. skipper	3. protege		
4. philosopher	5. captain	6. architect		
7. financier	8. warrior	9. broadcaster		
10. magician	11. figher pilot	12. boss		

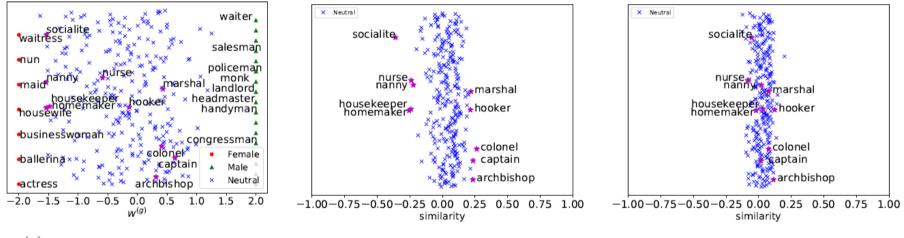
- Embeddings have biases due to the biases in the text used for learning.
- Toxic and non toxic comments can be distinguished by the model by recognizing determined words.

Term	Toxic	Overall
atheist	0.09%	0.10%
queer	0.30%	0.06%
gay	3%	0.50%
transgender	0.04%	0.02%
lesbian	0.10%	0.04%
homosexual	0.80%	0.20%
feminist	0.05%	0.05%
black	0.70%	0.60%
white	0.90%	0.70%
heterosexual	0.02%	0.03%
islam	0.10%	0.08%
muslim	0.20%	0.10%
bisexual	0.01%	0.03%

- ·

0 11

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings 2016 (<u>https://arxiv.org/pdf/1607.06520.pdf</u>) Measuring and mitigating unintented bias in text classification 2017 – (<u>link</u>)



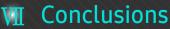
(a) $w^{(g)}$ dimension for all the professions

(b) Gender-neutral profession words projected to gender direction in GloVe

(c) Gender-neutral profession words projected to gender direction in GN-GloVe

Learning Gender-NeutralWord Embeddings (2018) - <u>https://arxiv.org/pdf/1809.01496.pdf</u> Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender Biases in Word Embeddings But do not Remove Them -<u>https://arxiv.org/pdf/1903.03862.pdf</u>

- Introduction
- State of the Art Π
- Embeddings Π
- Our approach IV
 - The dataset The models Π
- Results V



Dataset

Dictionary	 4 pre-made wordlists combined (2,400 words) Checked by linguists to find offensive in context words Added spelling variants and even more swear words
Raw datasets	 Competition datasets Multiple corpora, pre-annotated (Hate Sonar, <u>Wikipedia Detox project</u>, Kaggle, Vulgar Twitter, Waseem & Hovy 2016 – Twitter) Custom corpus scraped from the Internet and annotated by linguists
Cleaned dataset	 Removed too long and too short sentences (3-30 words) Removed incomprehensible sentences (tagged by linguists as "nonsense") Preprocessing: substituting user names and URL's with <user> and <url> tags, normalizing words and letter case.</url></user> Final corpus: 98k phrases, 49k not offensive and 49k offensive.

How to recognize offensive sentences?

• Contains expletives/swear-words/offensive terms

GOD DAMN GOD DAMN GOD DAMN GOD DAMN GOD DAMN

• Expresses rude meaning

Before I accuse you of cringeworthy acts with donkeys, what does sprotected mean?

• Carries meaning that is harsh politically/ethically/emotionally and so expresses hate/disgust/disrespect.

Only Americans are degenerate enough to 'honor' their war dead by having a barbecue. Anyone who 'grills out' for Memorial Day is trash.

• Raises uncomfortable topics related to the human genitals, such as sexual orientation, defecation, in a gross way

My girlfriend was on her Period and forgot to tell me one night, I was rather drunk and so failed to notice the smell of a fish market coming from her lower regions.

• Contains hate speech/sarcasm/sexism/racism/violence/etc.

Why keep your jewish mutt nose when you breathe out of your nigger mouth anyways?

• Discusses using drugs or performing other illegal actions

JUST SMOEK WEEED TWICE AS HARD!!!!

For linguists

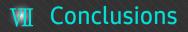
- Sentences that caused conflict in linguistic assessment.
- Sentences regarding ethnicity, religion, political views.
- Linguists often find swear words non-offensive.
- Sentences containing bad words depending on context.

Bias removal?

Word	Тохіс	Non-Toxic
atheist	0.009%	0.022%
arab	0.025%	0.013%
muslim	0.038%	0.060%
islam	0.003%	0.013%
queer	0.126%	0%
gay	0.445%	0.066%
transgender	0%	0%
lesbian	0.022%	0%
homosexual	0.009%	0%
feminist	0.006%	0.003%
black	0.644%	0.193%
white	1.133%	0.098%
heterosexual	0.003%	0%
bisexual	0.003%	0%

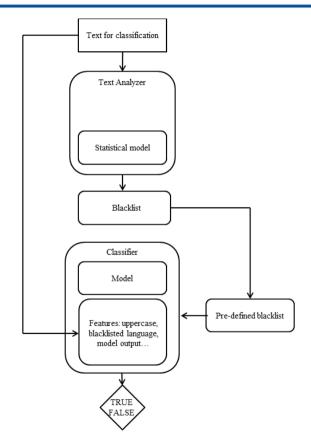
- Tried to make the dataset as balanced as possible.
- Checking the words contained in the sentence (based on the dictionary).
- In some sources less bias than in others.

- I Introduction
- State of the Art
- **III** Embeddings
- IV Our approach
 - I The dataset II The models Results



VI

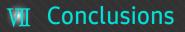
Pipeline



Features	Machine learning	Deep learning
• Linguistic features	 Sentence classifier (SVM, Random forest) NLTK tokenizer Tf-ldf Classifier 	 LSTM + Attention Transformer (OpenAI GPT, Custom implementation) Embeddings: ELMo, fastText 1M, Universal Sentence Encoder, custom embedding
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

- I Introduction
- State of the Art
- III Embeddings
- IV Our approach
 - I The dataset I The models

VI Results



Task	Macro F1	Placement
6 A Offensive/Not Offensive	0.80	8 th position
6 B Targeted/Untargeted	0.69	9 th position
6 C Individual/Group/ Organization/Other	0.63	2 nd position
5 A Hate speech against women o r immigrants	0.51	8 th position

	Test			
Model	Accuracy	Precision	Recall	F-score
SVM	0.93	0.93	0.93	0.93
Lstm (Custom)	0.90	0.90	0.90	0.90
Lstm (Random)	0.89	0.89	0.89	0.89
Lstm (Elmo)	0.91	0.91	0.91	0.91
Lstm (Fastext-1M)	0.89	0.89	0.89	0.89
Finetune	0.95	0.95	0.95	0.95

	Test difficult			
Model	Accuracy	Precision	Recall	F-score
SVM	0.59	0.62	0.59	0.59
Lstm (Custom)	0.58	0.60	0.58	0.58
Lstm (Random)	0.60	0.61	0.60	0.60
Lstm (Elmo)	0.61	0.63	0.61	0.62
Lstm (Fastext-1M)	0.59	0.62	0.59	0.59
Finetune	0.61	0.65	0.61	0.62

	Expected	SVM	Lstm Custom	Lstm Random	Lstm ELMO	Lstm 1M	Finetune
quit using song lyrics queer	FILTER	FILTER	FILTER	CLEAN	CLEAN	FILTER	FILTER
Matt your so luckey to be going out with jade"	CLEAN	CLEAN	CLEAN	CLEAN	FILTER	CLEAN	FILTER
You were an adopted failure	FILTER	CLEAN	CLEAN	FILTER	CLEAN	CLEAN	FILTER
Yeah he went of to trojan	CLEAN	CLEAN	FILTER	CLEAN	FILTER	FILTER	CLEAN
on church they told me that Jesus can walk on water, and I told them that Chuck Norris can walk on Jesus	FILTER	CLEAN	CLEAN	FILTER	FILTER	FILTER	FILTER
i hate being fat	CLEAN	FILTER	FILTER	FILTER	FILTER	FILTER	FILTER

- I Introduction
- State of the Art
- III Embeddings
- IV Our approach
 - I The dataset I The models Results
- VII Conclusions

VI

Conclusions

- A classifier for detecting offensive sentences.
- Our architecture is suitable for mulitple (related) offensive sentence classification tasks.
- Our models and datasets.
- Still many challenges to solve.
- Socially debiasing Deep learning/ML model is difficult (if not impossible).
- Offensive sentence classification is a problem of classifying "another language".

- Wider set of features.
- Using both a blacklist and a whitelist.
- Linguistic analysis of the corpus.

Thank You

SAMSUNG