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Wikipedia Detox Aggression

“Your behaviour is 
inappropriate and your 
reaction is exaggerated. 

I am not sure if you should 
have administrator rights.”

Do you think, it is 
aggressive or not?
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MOTIVATION
COMMON GENERALIZED NLP
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MOTIVATION
COMMON GENERALIZED NLP

OUR PERSONALIZED NLP
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Representativeness

Hard to acquire data (annotations) 
from all social groups representing 

all diverse beliefs

“The people like me are not respected 
by the system”

MOTIVATION
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Fairness

Common generalized solutions are 
biased toward the mainstream

“Since the system does not regard my 
individual beliefs, I do not trust in it”



SUBJECTIVE 
NLP TASKS
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1. Reader perspective: perception prediction
a. Emotions (many models, multiple dimensions)
b. Offensive content detection, incl. aggression, toxic, 

hate speech, cyberbullying, hostile, insulting
c. Humor, funny
d. Sarcasm and irony detection 
e. Antagonistic, provocative, trolling speech detection
f. Counterspeech detection
g. Hope, supportive speech detection
h. Obscene language detection
i. Dismissive, patronising, condescending
j. Unfair generalisation
k. Slur usage 
l. Unpalatable questions

m. Persuasiveness
n. Inflammatory text
o. Subjective perception of sentiment polarization

The tasks often overlap 

SUBJECTIVE   NLP   TASKS
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2. Author perspective
a. Sentiment analysis
b. Content generation 

(e.g. style-based), 
summarization, 
adjustment

3. Mixed   
a. Conversations



MEASURING 
DIVERSITY

[Kan21, Mił21, Koc21b]
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Collection-oriented
Krippendorff’s alfa [Koc21a]

WAVE kappa - Wroclaw 
Annotators Variability Estimator; 

Fleiss’ kappa aggregated over 
different no. of users  [Koc21a]

MEASURING DIVERSITY
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Document-oriented

Document Controversy 
(entropy-based) [Kan21]

Human-oriented

Human Conformity; general, 
weighted, class-based [Kan21]

HB-measure - Human Bias 
[Koc21b]; aggregated Z-score; for 

emotions: PEB - Personal 
Emotional Bias [Mił21]



CONTROVERSY = 1.0
(entropy-based)

CONTROVERSY MEASURE

“Your behaviour is inappropriate and your reaction is exaggerated. 
I am not sure if you should have administrator rights.”

Real data: Wikipedia Detox 13



CONTROVERSY = 0.59
(entropy-based)

CONTROVERSY MEASURE

“Your behaviour is terrible and your reaction is exaggerated. 
I am not sure if you should have administrator rights.”

inappropriate
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CONFORMITY MEASURE

“Your behaviour is inappropriate and your reaction is exaggerated. 
I am not sure if you should have administrator rights.”

CONFORMITY = 0.50

CONFORMITY = 0.50

Real data: Wikipedia Detox 15
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CONFORMITY MEASURE

“Your behaviour is terrible and your reaction is exaggerated. 
You don’t deserve administrator rights.”

CONFORMITY = 0.79

CONFORMITY = 0.21 = 3
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PERSPECTIVES
[Koc21a]

4
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PERSPECTIVES: MACROSCOPIC
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PERSPECTIVES: MACROSCOPIC
(general)

Perspective profile Statement Information source Annotation

Society-based, global, 
general.

Used in most research.

Assumes the 
existence of 
common perception 
of the content

“People generally treat 
some content 
offensive/funny/sad/…”

(1) content
(2) context of the 
content, e.g. source

Several 
trained/expert 
annotators are able 
to express common 
perception (beliefs)
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PERSPECTIVES: MESOSCOPIC
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PERSPECTIVES: MESOSCOPIC
(group-based)

Perspective profile Statement Information source Annotation

Group-based, social or 
demographic groups.

Perception is shared 
in social groups

“There are some 
groups of people who 
perceive the content in 
the same way as 
offensive/funny/sad/…”

(1) content
(2) context of the content
(3) group demographic 
profile, e.g. age
(4) group context, e.g. 
culture, shared personality 
traits, religion

A lot of annotations 
per document 
are required.

Annotator profiles 
need to be collected 
(surveys, behaviour)
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PERSPECTIVES: MICROSCOPIC

Human-
centered
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PERSPECTIVES: MICROSCOPIC
(personalized)

Perspective profile Statement Information source Annotation

Individual, fully 
personalized.

Each individual may 
perceive content 
differently.

“Perception of the 
content depends 
on a single human, 
i.e. on their 
individual and 
temporal concext”

(1) content
(2) context of the content
(3) individual behaviour
(4) individual demographics
(5) individual social context 
(relationships with the author 
and the social group)
(6) temporal affective state 
(mood, emotions)

An individual 
annotator beliefs 
need to be 
identified using 
surveys and/or 
previous 
annotations

Human-centered
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PERSONALIZED NLP:
What we need?

Data about 
human beliefs

Texts earlier annotated by a 
given individual

24

Agreed, generalized 
labels are useless

Usually obtained by 
majority voting



RESEARCH ON 
OFFENSIVE 

CONTENT

[Koc21a, Kan21, Koc21b]
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OFFENSIVE CONTENT: 
ANNOTATED DATA

5a
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WIKI  DETOX DATASETS (English)

Wiki 
Detox

Attack dataset

Aggression dataset

Toxicity dataset

Publicly available
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WIKI: Toxicity

Texts PeopleClasses

2 159,686 4,301

Annotations Controversial Texts

1,598,289 40.5 %
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WIKI: Aggression & Attack 

Texts PeopleClasses

2 115,864 4,053 
2,190

Annotations Controversial Texts

1,365,217 
855,514

51.3% & 48%
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WIKI: Aggressive

Disagreement in ~50% 
of annotations

N
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Controversy in dev set Controversy in test set
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OFFENSIVE CONTENT: 
DATA SPLIT

Train-dev-test

5b
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DATASET SPLIT: Wiki

CONFORMITY 
CALCULATION
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DATASET SPLIT: Wiki

CONFORMITY 
CALCULATION
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DATASET SPLIT: Wiki

CONFORMITY 
CALCULATION
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DATASET SPLIT: Wiki

CONFORMITY 
CALCULATION
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OFFENSIVE CONTENT: 
METHODS

5c
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GENERAL METHOD - BASELINE

Input: text 
embedding only
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1. CONFORMITY-BASED PERSONALIZATION

Input: text embedding + user conformity measures 
                                                                     (6 features) 40



2. CLASS-BASED PERSONALIZATION

Input: text embedding + texts seen by user as aggressive / non-aggressive 
(avg. of their embeddings)
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3. ANNOTATION-BASED PERSONALIZATION

Input: text embedding + all texts prev. seen by the user 
with their annotations 1 – 0, raw embeddings 42



OFFENSIVE CONTENT: 
RESULTS

5d
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EVALUATION RESULTS

44F1 for the aggression class only



EVALUATION RESULTS
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Where PNLP gains?

Crucial gain 
for most 

controversial 
texts

% of texts in the test set sorted by controversy (0-10: most controversial)



Low std. dev. 
for some annotators 
⇒ not credible ones?
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HUMAN EMBEDDINGS: Wiki Aggression
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WORD   EMBEDDINGS: Wiki Aggression
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WORD   EMBEDDINGS: Wiki Attack
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WORD   EMBEDDINGS: Wiki Toxicity



RESEARCH ON 
EMOTIONAL 

CONTENT 
PERCEPTION

ACL2021 - [Mił21]
ICDM2021 - [Koc21b]
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Texts PeopleEmotions

10 values 7,004 8,853

Annotations Controversial Texts

3,774,338 100 %
NOT publicly available

EMOTIONAL DATA (in Polish)
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EMOTIONAL TEXTS: example
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Example opinion

“She closed an 
unsuccessful chapter in 
her life and decided to 

start all over again.”

positive

negative

neg-pos
intensity
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Different answers
“She closed an unsuccessful chapter in her life and 

decided to start all over again.”

TRUST

JOY

ANTICIPATION

SURPRISE

DISGUST

FEAR

SADNESS

ANGER

0.93

1.33

1.70

0.92

0.37

0.66

0.53

0.46

Average scores 
over all 54 
annotators

Avg 55



Avg

Different answers
“She closed an unsuccessful chapter in her life and 

decided to start all over again.”

0.93 1

1.33 2

1.70 2

0.92 1

0.37 0

0.66 0

0.53 0

0.46 0

John
scores fitting majority 

low Personal 
Emotional Bias (PEB)

J 56

PEB: Z-score

TRUST

JOY

ANTICIPATION

SURPRISE

DISGUST

FEAR

SADNESS

ANGER



Avg

Different answers
“She closed an unsuccessful chapter in her life and 

decided to start all over again.”

0.93 1 0

1.33 2 0

1.70 2 0

0.92 1 0

0.37 0 1

0.66 0 1

0.53 0 3

0.46 0 2

John scores: 
close to majority,

= low PEB

Bob scores: 
outliers,

= high PEB

BJ 57

TRUST

JOY

ANTICIPATION

SURPRISE

DISGUST

FEAR

SADNESS

ANGER



EMOTIONAL EXPERIMENTS

(1) Multi-task 
classification

(2) Multivariate 
regression
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EMOTIONAL DATA SPLIT
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Similar to 
offensive data 

but 
with 10 folds

PEB: Z-score



RESEARCH ON 
EMOTIONS: 
METHODS

6a
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GENERALIZED vs. PERSONALIZED NLP
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FOUR   METHODS

Text
State-of-the art 
text embeddings 

(baseline)

1

Demographics
Text + demographic features

describing an individual

2

Personal 
Emotional Bias

Text + one pre-computed 
personal feature (human bias)

3

Combined
Checking how it 

performs together

4

62



(1) TEXT ONLY: BASELINE

63



(2) DEMOGRAPHICS & 
(3) PERSONAL EMOTIONAL BIAS (PEB/HB)

(4) ALL: demogr. + PEB feature

(2) Demographic features 
(3) PEB/HB feature

(4) Demographic + PEB/HB features
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RESEARCH ON 
EMOTIONS: 

RESULTS

6b
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CLASSIFICATION: all emotions aggregated

Other language 
models:

● XLM-RoBERTa
● fastText + LSTM
● Polish RoBERTa

Worse by <1.5 p.p.
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CLASSIFICATION: three emotional 
dimensions

(1) Text only
Model based only on text 
embeddings

(3) Text and PEB
Model prepared on text 
embeddings and 
Personal Emotional Bias

     

+19 +23 +14
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REGRESSION: all emotions aggregated

Other language 
models:

● XLM-RoBERTa
● fastText + LSTM
● Polish RoBERTa

Worse by 3 p.p.
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REGRESSION: three emotions

(1) Text only
Model based only on text 
embeddings

(3) Text and PEB
Model prepared on text 
embeddings and 
Personal Emotional Bias

     

+27 +44 +10
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How many texts are needed for PEB?

(1) TXT - baseline
(3) TXT+PEB: 
● random texts for PEB
● most controversial 

texts for PEB

All emotions, HerBERT

Only ONE doc 
makes 

a difference!
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Number of texts used to calculate PEB



AGREEMENT LEVEL (controversy) 
vs. performance

71
Controversy in the collection

PE
B

-o
nl

y 
m

od
el

 
Pe

rf
or

m
an

ce



RESEARCH ON 
MULTIPLE TASKS

AND MODELS
Wiki Detox: Attack, 
Aggression, Toxicity

+ Emotions
ICDM2021: [Koc21b]

7
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MODELS: 
Baseline (TXT) & OneHot ID & HuBi-Formula
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MODELS: 
HuBi-Simple: learned human bias
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MODELS: 
HuBi-Medium:   learned human embedding
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MODELS: 
HuBi-Complex:  
human-word embedding



MULTIPLE TASKS:
RESULTS

Wiki Detox + Emotions

7a

77



78

FORMULA vs. LEARNED BIAS
HB feature vs. HuBi-Simple (learned bias)

vs.

HuBi-Simple: learned human biasHB calculated feature (formula)



Positive emotions 
are highly correlated

73% and more
Negative emotions 

are highly correlated
80% and more
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FORMULA vs. LEARNED BIAS
Correlation between biases

C
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Learned bias

Biases are 
very highly correlated

90% and more
(diagonal)
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WIKI: results on three datasets
F1

-p
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WIKI: Results on Aggression Data
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EMOTIONS: Results 

Multivariate regression
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EMOTIONS: Results

Multivariate regression
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TRAINING TIME: emotions
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TESTING TIME: emotions



CONCLUSIONS

8
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CONCLUSIONS #1

Personalized methods ALWAYS perform 
better than the generalized ones

Each PNLP method gains much more 
than language models

Conformity, Controversy and Human Bias 
deliver vital information about the user
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PNLP vs. GNLP PNLP vs. language

Diversity
Even four docs provide user 

information that improves reasoning 
(5-6 docs for emotional texts)

Few docs is enough



CONCLUSIONS #2

Train/dev/test split should be 
based on users instead of texts

Our PNLP methods can be applied 
to any subjective task

Demographic data only slightly 
improves reasoning
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Validation Application

DataDemographics
Human-centered annotations are 

crucial for personalised NLP



TEAM
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Take-home message
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Personalized NLP 
is much better than 
generalized for all 

subjective tasks



Thank you for your attention!
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Q & A



THE END
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