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Interpretability

“Interpretability: the degree to which human can understand the cause of decision
[of a model]”
Miller (2019)

“A Black Box Model is a system that does not reveal its internal mechanisms”
Molnar (2020)
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Motivations

« Deep neural networks have rapidly become a central component for solving
many NLP tasks.

« They learn patterns present in language corpora, and do not gain explicit
knowledge of linguistic abstractions.

+ Large neural models are black boxes that are very hard to interpret.

Je to Cerna skrinka.

output

It is a black box. \’
>
input .’

Introduction




Motivations

* How do they work? What emergent abstractions can we observe in them?

« Are the emergent structures and abstractions similar to classical linguistic
structures and abstractions?

 Can interpretation be useful for improving neural nets? E.g. in avoiding
predictions based on spurious correlations?

.

Je to cerna skrinka.
>

It is a black box.

input output
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Introduction

Motivations

Question:
Ann and her children are going to Linda's home ____
(a) by bus (b) by car (c) onfoot (d) by train

Original Context:

...Dear Ann, I hope that you and your children will
be here in two weeks. My husband and I will go to
meet you at the train station. Our town is small...

Prediction: (d) by train

Why by train (d) and not on foot (c)?

MiCE-Edited Context:

...Dear Ann, I hope that you and your children will
be here in two weeks. My husband and I will go to
meet you at the-train—statien your home on foot.
Our tewn house is small...

Contrast Prediction: (c) on foot

Tomasz Limisewicz
o »
&H# 14h-Q

Zapraszam! @.'&' &

Check it out! 43.Handsome &

£+ - Masquer l'original - Notez cette traduction

The doctor asked the nurse to help her in the procedure

El doctor le pidio a la enfermera que le ayudara con el procedimiento

Examples: Ross et al. (2021): Minimal Contrastive Editing in Question Answering; Stanovsky et al. (2019): Gender Bias in Machine

Translation; Me: Machine Translation?
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A Note on Terminology

A Neural Network / Model: We will focus on
Transformer based models (mainly LLMs ->
BERT)

Embeddings: vector representations of the
model: numerical output or hidden states in
multi-layer systems.

Representations: all of numerical
representation of the data in the model. E.g.
in Transformer: embeddings + attention
weights
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A Few Interpretation Approaches

Cutput
Probabilities

Interpretation of Attention Weights

N

-
Add & Norm

Clustering Latent Representation =

Add & Norm

Multi-Head
Attention

1 Y

\ Masked
Multi-Head Multi-Head

¢ Attention
Attention | .

J -/
Positional
Encoding

Principal Component Analysis

N x

Probing Neural Networks

Causal Mediation

Inputs OulN
{shifted NY

Introduction




A Few Interpretation Approaches

Interpretation of Attention Weights
Clustering Latent Representation
Principal Component Analysis
Probing Neural Networks

Causal Mediation
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Game of Probes



+ Contextual neural network models is trained, e.g. for Language Modeling,
Translation

« The parameters of the network are fixed (frozen). A new simple network takes is
trained on top for auxiliary linguistic task, e.g. POS tags prediction.

« We assume that when probing classifier accuracy is high the networks encodes
linguistic abstraction well.

Predicted Labels
(e.g., POS tags)

NNP

______________________________________

Probing Model

______________________________________

Contextual Word
Representations

Pretrained Contextualizer

} f f f

Input Tokens Ms. Haag plays Elianti

Figure: Liu et al. (2019): “Linguistic Knowledge and Transferability of Contextual
Representations”

12


#

Syntax Probing
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Noun flight through Pro
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H[ 1 H\/ & | |
I prefer the moming flight through Denver morning Denver

Figure: Comparison of two widely used syntactic structure types: dependency and
constituency trees, from Jurafsky and Martin 2009

Game of Probes
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* Blevins, Levy, and Zettlemoyer 2018 use a feed-forward classifier on top of
RNN representation to predict whether a pair of tokens is connected by a
dependency edge.

« Hewitt and Manning 2019 construct a linear to approximate syntactic tree
distance between tokens by the L2 norm of the difference of the
transformed vectors.

min |(B(hi — h))" (B(h = hy)) = dr (wi, w)]

* This approach produces the approximate syntactic pairwise distances for
each pair of tokens. The minimum spanning tree is used to create a
dependency tree with high accuracy (82.5% UAS on Penn Treebank).
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Syntax Probing

Gold Parse Distance Matrix
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Figures from John Hewitt's blog
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What Is Encoded Where?

Tenney et al. (2019) performs probing for
linguistic  features encoded in  BERT
(POS-tagging, syntactic parsing, semantic
roles parsing, coreference resolution, ...). They
observe that subsequent layers specializes in
encoding specific types of information and
make an analogy to standard* NLP-pipeline.

MORPHOLOGY

SEMANTICS

COREFERENCES

OUTPUT

Game of Probes



What Is Encoded Where?

Layer number

Game of Probes
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Orthogonal Structural Probe

Tomasz Limisiewicz and David Marecek. Introducing orthogonal constraint in structural probes.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics. Association

for Computational Linguistics, August 2021b

» Based on structural probing approach

Hewitt and Manning (2019)

 Probe for syntactic dependency,
lexical hypernymy, and
non-linguistic structures

« Decompose embeddings into parts
encoding specific linguistic structures

Orthogonal Probe

Introducing Orthogonal Constraint in Structural Probes

Tomasz Limisiewicz and David Marecek
Institute of Formal and Applied Linguistics, Faculty of Mathematics and Physics
Charles University, Prague, Czech Republic
{limisiewicz, marecek}@ufal.mff.cuni.cz

Abstract

With the recent success of pre-trained mod-
els in NLP. a significant focus was put on in-
terpreting their representations. One of the
most prominent approaches is structural prob-
ing (Hewitt and Manning, 2019), where a
linear projection of word embeddings is per-
formed in order to approximate the topology of
dependency structures.In this work, we intro-
duce a new type of structural probing, where
the linear projection is decomposed into 1. iso-
morphic space rotation; 2. linear scaling that
identifies and scales the most relevant dimen-
sions. In addition to syntactic dependency, we
evaluate our method on two novel tasks (lexi-
cal hypernymy and position in a sentence). We
jointly train the probes for multiple tasks and
experimentally show that lexical and syntactic
information is separated in the representations.
Moreover, the orthogonal constraint makes the
Structural Probes less vulnerable to memoriza-
tion.

(b) Orthogonal Structural Probe
Figure 1: Comparison of the Structural Probe of He-

witt and Manning (2019) and the Orthogonal Struc-
tural Probe proposed by us.
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Structural Probe

Hewitt and Manning (2019)

« Approximation of the dependency tree distance:

min |(B(h; — hy)) (B(h; — hy)) — dr(w;, w;)

« Approximation of the depth in a tree:
mBlIl ’(th T(th . "LUZHT’

A Structural Probe for Finding Syntax in Word Representations

John Hewitt
Stanford University
johnhew@stanford.edu

Abstract

Recent work has improved our ability to
detect linguistic knowledge in word repre-
sentations. However, current methods for
detecting syntactic knowledge do not test
whether syntax trees are represented in their
entirety. In this work, we propose a structural
probe, which evaluates whether syntax trees
are embedded in a linear transformation of a
neural network’s word representation space.
The probe identifies a linear transformation
under which squared L2 distance encodes the
distance between words in the parse tree, and
one in which squared L2 norm encodes depth
in the parse tree. Using our probe, we show
that such transformations exist for both ELMo
and BERT but not in baselines, providing
evidence that entire syntax trees are embedded
implicitly in deep models’ vector geometry.

Introduction

As pretrained deep models that build contextual-
ized representations of language continue to pro-
vide gains on NLP benchmarks, understanding

Christopher D. Manning
Stanford University
manning@stanford.edu

In this work, we propose a structural probe, a
simple model which tests whether syntax trees are
consistently embedded in a linear transformation
of a neural network’s word representation space.
Tree structure is embedded if the transformed space
has the property that squared L2 distance between
two words’ vectors corresponds to the number of
edges between the words in the parse tree. To re-
construct edge directions, we hypothesize a linear
transformation under which the squared L2 norm
corresponds to the depth of the word in the parse
tree. Our probe uses supervision to find the trans-
formations under which these properties are best
approximated for each model. If such transfor-
mations exist, they define inner products on the
original space under which squared distances and
norms encode syntax trees — even though the mod-
els being probed were never given trees as input or
supervised to reconstruct them. This is a structural
property of the word representation space, akin to
vector offsets encoding word analogies (Mikolov
et al., 2013). Using our probe, we conduct a tar-
geted case study, showing that ELMo (Peters et al.,

20


#
#
#
#
#

Linguistic Structures

DEP Dependency tree from
Universal Dependencies
(Nivre et al., 2020)

LEX Hypernymy hierarchy
from WordNet
(Miller, 1995)

Orthogonal Probe

[ /R

The team focus is prevention and education .

(9)

e

The team focus is prevention and education .

v
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Baseline Structures

POS Right branching chain

RAND Randomly generated trees

Orthogonal Probe

/ \/ \ / \/ \/ \/
The team focus is prevention and education

[ N\ / \ / N\ / l / \

The team focus is prevention and education .

L J

\

22



Structural Probe

Orthogonal Probe

Linear
rango&atjgt_l
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Orthogonal Structural Probe

Line
rangoﬁau‘cjg

Orthogonal Probe
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Orthogonal Structural Probe

Orthogonal Probe
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Disentanglement

Orthogonal Probe
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Disentanglement
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Orthogonal Probe
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Disentanglement: Syntax and Hypernymy

25

Orthogonal Probe
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Disentanglement: Other Pairs (16th Layer)
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Orthogonal Probe
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Disentanglement and Rank

DEP LEX POS RAND
< = = = .
3 k7] & @ T o 3 @
[m)] [m)] (| (| [m)] (@] [m)] (|

o Depth | 62 48 | 0 o |10 19| 23 21

O pist. 126 | 0 0 9 23| 25 30

«  Depth 20 18 | 0 4 1 5

L
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2 Depth 14 10 | 13 10

% Dist. 70 | 33 50

Q  Depth 131 95

Z

<

©  Dist. 262

Table: The number of shared dimensions selected by Scaling Vector after the joint training
of probe on top of the 16th layer.
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Orthogonal Probes

Summary

New structural objectives: lexical hypernymy, position in the

sentence

The sufficient rank for a task is self-learned by gradient
optimization

Lexical and dependency structures are encoded in the orthogonal

subspaces

32



Multilingual Analysis



Multilingual Approach

Tomasz Limisiewicz and David Marecek. Examining cross-lingual contextual embeddings with orthogonal

structural probes.

In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP).

Association for Computational Linguistics, November 2021a

* Probing for syntactic and lexical
information in multilingual
representations (mBERT)

« Covers 9 diverse languages

« Motivation: How similar are the
representations across languages?

ultilingual Analysis

arXiv:2109.04921v1 [cs.CL] 10 Sep 2021

Examining Cross-li 1C

1 Emhbeddi with Orthogonal

Structural Probes

Tomasz Limisiewicz and David Marecek

Institute of Formal and Applied Li;

Faculty of and Physics

Charles University, Prague, Czech Republic
{limisiewicz, marecek}@ufal.mff.cuni.cz

Abstract

State-of-the-art contextual embeddings are ob-
tained from large language models available
only for a few languages. For others, we
need to learn representations using a multi-
lingual model. There is an ongoing debate
on whether multilingual embeddings can be
aligned in a space shared across many lan-
guages. The novel Orthogonal Structural
Probe (Limisiewicz and Maretek, 2021) al-
lows us to answer this question for specific
linguistic features and learn a projection based
only on mono-lingual annotated datasets. We
evaluate syntactic (UD) and lexical (WordNet)
structural information encoded in MBERT’s
contextual representations for nine diverse lan-
guages.!  We observe that for languages
closely related to English, no transformation
is needed. The evaluated information is en-
coded in a shared cross-lingual embedding
space. For other languages, it is beneficial to
apply orthogonal transformation learned sep-

‘We probe for the syntactic and lexical structures
encoded in multilingual embeddings with the new
| Probes (Limisiewicz and
Maregek, 2021). Previously, Chi et al. (2020) em-
ployed structural probing (Hewitt and Manning,
2019) to evaluate cross-lingual syntactic informa-
tion in MBERT and visualize how it is distributed
across languages. Our approach’s advantage is
learning an orthogonal transformation that maps
the embeddings across languages based on mono-
lingual linguistic information: dependency syntax
and lexical hypernymy. This new capability allows
us to test different probing scenarios. We mea-
sure how adding assumptions of isomorphism and
i ity of the ions across
affect probing results to answer our research ques-
tions.

2 Related Work

Probing It is a method of evaluating linguistic

arately for each language. We
apply our findings to zero-shot and few-shot
cross-lingual parsing.

1 Introduction

The representation learned by language models has
been successfully applied in various NLP tasks.
Multilingual pre-training allows utilizing the rep-
resentation for various languages, including low-

encoded in pre-trained NLP models.
Usually, a simple classifier for the probing task
is trained on the frozen model’s representation
(Linzen et al., 2016; Belinkov et al., 2017; Blevins
et al., 2018). The work of Hewitt and Manning
(2019) introduced structural probes that linearly

T R

the topology of dependency trees. Limisiewicz
and Mareéek (2021) proposed new structural tasks
and i int allowing to

racanres anac Thara ic an anan ahant
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How the Representation Vary Across Languages?

+ To what extent embeddings are similar
across languages. What can affect this
similarity Vuli¢ et al. (2020)

o Is language signal encoded
uniformly across languages?

o  Will applying orthogonal map
improve cross-lingual transfer?

* We can study relations between
languages based on the multilingual
probes Chi et al. (2020)

Figure: Visualization of multilingual

representation (Chi et al., 2020)

Multilingual Analysis
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Multilingual Approach

Our approaches and corresponding assumptions about the likeness of the
cross-lingual embeddings:

* In-Lang no assumption We train a separate instance of a probe for each
language.

: 4
_:§_ 2\ Orthogonal E“i
_:%'L I Transformation L % ]
& EH
Z S

IProjlectic}»ns

=]
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Multilingual Approach

Our approaches and corresponding assumptions about the likeness of the
cross-lingual embeddings:

* In-Lang no assumption We train a separate instance of a probe for each
language.

 MappedLangs isomorphity assumption We train a shared Scaling Vector for
each probing task and a separate Orthogonal Transformation per language.

3]
)

P Orthogonal
ransformation

I lProj’ectic}»ns |

|

| ScalingVector |

I {Em}:}eddﬁngs|

Multilingual Analysis
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Our approaches and corresponding assumptions about the likeness of the

cross-lingual embeddings:

* In-Lang no assumption We train a separate instance of a probe for each

language.

 MappedLangs isomorphity assumption We train a shared Scaling Vector for
each probing task and a separate Orthogonal Transformation per language.

« AllLangs uniformity assumption Both the Scaling Vector and

Orthogonal Transformation are shared across languages.

[ bty |

[ Or:}:nog onal |
, Transformation

|

‘Eml#ec;ldkngs\

Projkctions ’ =

I
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Our approaches and corresponding assumptions about the likeness of the
cross-lingual embeddings:

* In-Lang no assumption We train a separate instance of a probe for each
language.

 MappedLangs isomorphity assumption We train a shared Scaling Vector for
each probing task and a separate Orthogonal Transformation per language.

« AllLangs uniformity assumption Both the Scaling Vector and
Orthogonal Transformation are shared across languages.

| = L

] OrJ%Tg onal | °
, Transformation

I

Projkctions ‘

‘Eml#eddﬁngs\
|

1A %calirﬁg\}écto{ 4‘

|
|


#
#
#
#

Results for Dependency Probes

Approach EN ES SL ID ZH FI AR FR EU AVERAGE
Indo-Eur Other

Dependency Distance Spearman’s Correlation

IN-LANG 812 858  .857  .841  .830  .788  .838  .856  .769 | .846  .813

A MappepL| .000 (-001 ) .001  -003 .000 .00l -001 (-002) .001 | -.001  .000

A ALLL 000 (-.007 )(-.006)(-013)(-039) .000 (-.027)(-.006)(-032)[(-.005) (-.022)
Dependency Depth Spearman’s Correlation

IN-LANG 843 868  .867  .855  .844 822 865  .877  .797 | .864  .837

A MappepL|( -.004 ) (-003 )(-002 ) -002 .000 (-002) .01 -002 -.001 [(-.002)(-.001)

AAuL  |(-006) (- 007 ) (-.008 ) (-.011 ) (-.035) (005 ) (=031) (-010 ) (=031 )|(-008 ) (=023

Multilingual Analysis
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Results for Lexical Probes

Approach EN ES SL ID ZH Fl AR FR EU AVERAGE
Indo-Eur Other

Lexical Distance Spearman’s Correlation

IN-LANG 756 841 639 719 800  .657  .733  .794 679 | .757 717

A MappEDL| -003 005 -011 -001 (.010) .oo1 ([042') .001 -o008 | -.002 [ .009 )

AAuL  |(-038)(-025)(-.042 ) (-051)(-014)(-043) MO28S ( -.013 ) ((-063 )|(-.030 ) (-.029 )
Lexical Depth Spearman’s Correlation

IN-LANG 853 881  .779  .852 875  .784  .906  .844  .842 | .839  .850

A MappepL| 004  -005 (.013)(-011) .006 (.023) -024 .007 (.021)|(.004) .005

AAuL  |(-027 )(-.048 ) ( -.040 ) ([=224)) (-068 ) -.006 ([ (-032)(-020 )|(-.037 ) (|=103 )

Multilingual Analysis
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Trends
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Trends

LANGUAGE SPECIFIC:

TOKENS number of tokens used in mBERT
pre-training for a language

WALS EN Hamming (string) similarity between
features in WALS

PROBING RESULTS:

In-Lang (no assumption)
MappedLangs (isomorphity assumption)
AllLangs (uniformity assumption)

Multilingual Analysis
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Trends

Syntactic and lexical information is
uniformly encoded across mBERT's
representations of languages similar
to English.

For other languages, the orthogonal
mapping can improve results.

Multilingual Analysis
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Criticism of Probing




Over-Fitting to Data

Hewitt and Liang (2019), optimize the probe
to classify artificially assigned tags (control

task). The tags are assigned by random but
have the same distribution as POS tags.

They define selectivity as the difference of
accuracy on a control and a linguistic tasks.

Criticism of Probing

Labels: linguistic vs random

linguistic random
PRP VBD DT NN NN CC NN VB

rt .ttt 1

Figure from Lena Voita's blog
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https://lena-voita.github.io/posts/

Over-Fitting to Data

1.00 DEP Depth
mmm DEP Distance

0.95 LEX Depth
g mmm LEX Distance
+= 0.90 POS Depth
% P POS Distance
= 0.85 BN SELECTIVITY
o]
(&)
» 0.80
S

0.75
£
& 0.70
Qo
(7p)

0.65 .

Structural Probes Orthogonal Probes Orthogonal Probes Multitask
setting

Figure: Selectivity is difference between averaged correlations for DEP, LEX, POS
structures and RAND

Criticism of Probing 47



Is Probed Information Really Useful for LM

Elazar et al. (2021) argue that to explain the
model’'s behaviour we should identify the
information that is used rather than the
information that is encoded by the model.

They propose Amnesic Probing: selectively
remove information encoded in the
representation and observe the change in the
performance on the main task (language
modeling).

Criticism of Probing

amnesic probing

| L]

Property
(POS)

standard probing

-POS
(LOO) ek

) Task

Amnes:.lc (Remove POS) (LM)
Operation

L
OO0} (OOQ)huss (@@@)pren
T T T
[ i3 )
the dog L0
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Controlling Bias with Probes



Bias in the Model

Understanding how knowledge is
encoded in neural networks can help
combat unwanted behaviors, such
as predictions based on spurious
correlations ~ bias

Controlling Bias with Probes

The douor asked the nurse to hclp hcr in the procedure

El doctor le pidio a la enfermera que le ayudara con el procedimiento

Figure : Probable manifestation of gender bias in
Machine Translation Stanovsky et al. (2019)
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Controlling Bias with Probes

doctor (he/him)

doctor (she/her)
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Controlling Bias with Probes
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Interpreting Attention



Interpreting Attention: Background

Past works:

« Vig and Belinkov 2019 showed that in some language model (GPT-2) heads
attention is higher for pairs of tokens that are in a specific dependency relation.

« Raganato and Tiedemann 2018 induce dependency trees from each
self-attention matrix of Transformer with maximum spanning tree algorithm.
They obtain the trees which are on pair with right-branching chains.

 Clark et al. 2019 uses weighted average of all heads of language model (BERT)
to induce dependency tree. This method gives much better results than using
each single head.

Interpreting Attention

53
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BERT and Dependency Relations

Self-attention in a particular heads of a language model aligns with dependency
relations
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Previous works showed that individual BERT attention heads tend to encode
particular dependency relations.

We identify:
« Abstract heads (encode dependency of multiple labels)
« Specific heads (separate one relation type into multiple subtypes)

We show a method how to extract labeled dependency trees (52% UAS, 22% LAS
on English UD).

Y

e/ A — N _
A small town with two minarets glides by .
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Research cluster: >2000 CPUs; >100 GPUs
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the networks in different ways.! Others strive to
better understand_ how NLP models work. This
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Abstract

Transformer-based models have pushed state
of the artin many areas of NLP, but our under-
standing of what is behind their success is still
limited. This paper is the first survey of over
150 studies of the popular BERT model. We
review the current state of knowledge about
how BERT works, what kind of information
it learns and how it is represented, common
modifications to its training objectives and
architecture, the overparameterization issue,
and approaches to compression. We. then
outline directions for future research.
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and provide an overview of the current proposals
to improve BERT’s architecture, pre-training, and
fine-tuning. We conclude by discussing the issue
of overparameterization, the approaches to com-
pressing BERT, and the nascent area of pruning
as a model analysis technique.

2 Overview of BERT Architecture

Fundamentally, BERT is a stack of Transformer
encoder layers (Vaswani et al., 2017) that consist
of multiple self-attention ‘‘heads’”. For every in-
put token in a sequence, each head computes key,
value, and query vectors, used to create a weighted
representation. The outputs of all heads in the
same layer are combined and run through a fully
connected layer. Each layer is wrapped with a skip

(Vaswani et al., 2017) have taken NLP by storm,
offering enhanced parallelization and better mod-
eling of long-range dependencies. The best known
Transformer-based model is BERT (Devlin et al.,
2019); it obtained state-of-the-art results in nume-
rous benchmarks and is still a must-have baseline.

Although it is clear that BERT works remark-
ably well, it s less clear why, which limits further
hypothesis-driven improvement of the architec-
ture. Unlike CNNs, the Transformers have little
cognitive motivation, and the size of these models
limits our ability to experiment with pre-training
and perform ablation studies. This explains a large

and followed by layer normalization.
The conventional workflow for BERT consists
of two stages: pre-training and fine-tuning. Pre-
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Black Box Models Explainable

STUDIES IN COMPUTATIONAL
AND THEORETICAL LINGUISTICS

HIDDEN IN THE LAYERS

Interpretation of Neural Networks
for Natural Language Processing
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training uses two self-sup tasks: masked
language modeling (MLM, prediction of randomly
masked input tokens) and next sentence predic-
tion (NSP, predicting if two input sentences are
adjacent to each other). In fine-tuning for down-
stream applications, one or more fully connected
layers are typically added on top of the final
encoder layer.

The input representations are computed as
follows: Each word in the input i first tokenized
i Wastal 2016) andshop ety
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