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“Interpretability: the degree to which human can understand the cause of decision 
[of a  model]”
Miller (2019)

“A Black Box Model is a system that does not reveal its internal mechanisms”
Molnar (2020)
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4Introduction

Motivations

• Deep neural networks have rapidly become a central component for solving 
many NLP tasks.

• They learn patterns present in language corpora, and do not gain explicit 
knowledge of linguistic abstractions.

• Large neural models are black boxes that are very hard to interpret.

It is a black box. Je to černá skříňka.

input output
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Motivations

• How do they work? What emergent abstractions can we observe in them?
• Are the emergent structures and abstractions similar to classical linguistic 

structures  and abstractions?
• Can interpretation be useful for improving neural nets? E.g. in avoiding 

predictions based on spurious correlations?

It is a black box. Je to černá skříňka.

input output

be AD
J

co
lo
ra b

lac
k

boxis

NOUN
D

ET

cor
ef

item

bo
x

?



Motivations
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Examples: Ross et al. (2021): Minimal Contrastive Editing in Question Answering;  Stanovsky et al. (2019): Gender Bias in Machine 
Translation; Me: Machine Translation?

#
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Overview of the Presentation

Interpretability

Motivations behind 
interpreting neural 
networks.

Probing

Background works 
about probin neural 
nets for linguistic 
information.

Orthogonal 
Probe

Our method that 
allows to disentangle 
specific linguistic 
signals in the  
representations.

Controlling 
Bias

How our approach 
can improve the 
predictions of 
models.

Limitations

Is probing an 
adequate method 
for interpreting 
models?



A Neural Network / Model: We will focus on 
Transformer based models (mainly LLMs -> 
BERT)

Embeddings: vector representations of the 
model: numerical output or hidden states in 
multi-layer systems.

Representations: all of numerical 
representation of the data in the model. E.g. 
in Transformer: embeddings + attention 
weights
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A Note on Terminology



Interpretation of Attention Weights

Clustering Latent Representation

Principal Component Analysis

Probing Neural Networks

Causal Mediation

A Few Interpretation Approaches
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Game of Probes
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Classification Probing

• Contextual neural network models is trained, e.g. for Language Modeling, 
Translation

• The parameters of the network are fixed (frozen). A new simple network takes is 
trained  on top for auxiliary linguistic task, e.g. POS tags prediction.

• We assume that when probing classifier accuracy is high the networks encodes 
linguistic  abstraction well.

Figure: Liu et al. (2019): “Linguistic Knowledge and Transferability of Contextual 
Representations”

#
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Syntax Probing

Figure: Comparison of two widely used syntactic structure types: dependency and 
constituency  trees, from Jurafsky and Martin 2009

#
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Syntax Probing: Background

• Blevins, Levy, and Zettlemoyer 2018 use a feed-forward classifier on top of 
RNN  representation to predict whether a pair of tokens is connected by a 
dependency edge.

• Hewitt and Manning 2019 construct a linear to approximate syntactic tree 
distance  between tokens by the L2 norm of the difference of the 
transformed vectors.

• This approach produces the approximate syntactic pairwise distances for 
each pair of  tokens. The minimum spanning tree is used to create a 
dependency tree with high  accuracy (82.5% UAS on Penn Treebank).

#
#


Figures from John Hewitt’s blog
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Syntax Probing

https://nlp.stanford.edu//~johnhew//archives.html
#
#
#
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What Is Encoded Where?

MORPHOLOGY

SYNTAX

SEMANTICS

COREFERENCES

INPUT

OUTPUT

Tenney et al. (2019) performs probing for 
linguistic features encoded in BERT 
(POS-tagging, syntactic parsing, semantic 
roles parsing, coreference resolution, …). They 
observe that subsequent layers specializes in  
encoding specific types of information and 
make an analogy to standard* NLP-pipeline.

16Game of Probes
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Figure: Relative syntactic information across attention models and layers
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Orthogonal Probe



Tomasz Limisiewicz and David Mareček. Introducing orthogonal constraint in structural probes.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics. Association 

for  Computational Linguistics, August 2021b

• Based on structural probing approach 
Hewitt  and Manning (2019)

• Probe for syntactic dependency, 
lexical  hypernymy, and 
non-linguistic structures

• Decompose embeddings into parts  
encoding specific linguistic structures

19Orthogonal Probe

Orthogonal Structural Probe

#


Hewitt and Manning (2019)

• Approximation of the dependency tree distance:

• Approximation of the depth in a tree:

Introduction Experiments Next steps Q&A 20Orthogonal Probe

Structural Probe
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Linguistic Structures

DEP Dependency tree from  
Universal Dependencies 
(Nivre  et al., 2020)

LEX Hypernymy hierarchy 
from  WordNet 
(Miller, 1995)

The team focus is prevention and education .
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Baseline Structures

POS Right branching chain

RAND Randomly generated trees

The team focus is prevention and education    .

The team focus is prevention and education   .
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Structural Probe
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Orthogonal Structural Probe
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Orthogonal Structural Probe
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Disentanglement
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Disentanglement
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(b) Layer 6
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(c) Layer 16
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Disentanglement: Syntax and Hypernymy
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(d) LEX & RAND
29Orthogonal Probe

Disentanglement: Other Pairs (16th Layer)
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Depth 62 48 0 0 10 19 23 21

Dist. 126 0 0 9 23 25 30

Depth 20 18 0 4 1 5

Dist. 131 0 7 5 19

Depth 14 10 13 10

Dist. 70 33 50

Depth 131 95

Dist. 262

Table: The number of shared dimensions selected by Scaling Vector after the joint training 
of probe  on top of the 16th layer.
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Disentanglement and Rank
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Disentanglement and Rank
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● New structural objectives: lexical hypernymy, position in the 

sentence

● The sufficient rank for a task is self-learned by gradient 

optimization

● Lexical and dependency structures are encoded in the orthogonal 

subspaces

32

Summary

Orthogonal Probes
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Tomasz Limisiewicz and David Mareček. Examining cross-lingual contextual embeddings with orthogonal 
structural  probes.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP). 

Association  for Computational Linguistics, November 2021a

• Probing for syntactic and lexical 
information in  multilingual 
representations (mBERT)

• Covers 9 diverse languages

• Motivation: How similar are the 
representations  across languages?

Introduction Experiments Next steps Q&A 34Multilingual Analysis

Multilingual Approach
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How the Representation Vary Across Languages?

Figure: Visualization of multilingual  
representation (Chi et al., 2020)

• To what extent embeddings are similar  
across languages. What can affect this  
similarity Vulić et al. (2020)

○ Is language signal encoded 
uniformly across languages?

○ Will applying orthogonal map 
improve cross-lingual transfer?

• We can study relations between  
languages based on the multilingual  
probes Chi et al. (2020)

35Multilingual Analysis
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Our approaches and corresponding assumptions about the likeness of the 
cross-lingual  embeddings:

• In-Lang no assumption We train a separate instance of a probe for each 
language.
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Multilingual Approach
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Our approaches and corresponding assumptions about the likeness of the 
cross-lingual  embeddings:

• In-Lang no assumption We train a separate instance of a probe for each 
language.

• MappedLangs isomorphity assumption We train a shared Scaling Vector for 
each  probing task and a separate Orthogonal Transformation per language.
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Our approaches and corresponding assumptions about the likeness of the 
cross-lingual  embeddings:

• In-Lang no assumption We train a separate instance of a probe for each 
language.

• MappedLangs isomorphity assumption We train a shared Scaling Vector for 
each  probing task and a separate Orthogonal Transformation per language.

• AllLangs uniformity assumption Both the Scaling Vector and 
Orthogonal  Transformation are shared across languages.
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Multilingual Approach
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Our approaches and corresponding assumptions about the likeness of the 
cross-lingual  embeddings:

• In-Lang no assumption We train a separate instance of a probe for each 
language.

• MappedLangs isomorphity assumption We train a shared Scaling Vector for 
each  probing task and a separate Orthogonal Transformation per language.

  COMPARABLE PERFORMANCE

• AllLangs uniformity assumption Both the Scaling Vector and 
Orthogonal  Transformation are shared across languages.
PERFORMANCE DEPENDS ON  

    TYPOLOGICAL DIFFERENCES
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Multilingual Approach
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Results for Dependency Probes
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Results for Lexical Probes



Trends

LANGUAGE SPECIFIC:

TOKENS number of tokens used in mBERT 
pre-training for a language

WALS EN Hamming (string) similarity between 
features in WALS

PROBING RESULTS:

In-Lang (no assumption)
MappedLangs (isomorphity assumption)
AllLangs (uniformity assumption) 
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Trends
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LANGUAGE SPECIFIC:

TOKENS number of tokens used in mBERT 
pre-training for a language

WALS EN Hamming (string) similarity between 
features in WALS

PROBING RESULTS:

In-Lang (no assumption)
MappedLangs (isomorphity assumption)
AllLangs (uniformity assumption) 



Trends

Syntactic and lexical information is 
uniformly encoded across mBERT’s 
representations of languages similar 
to English.

For other languages, the orthogonal 
mapping can improve results.
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Criticism of Probing



Hewitt and Liang (2019), optimize the probe 
to classify artificially assigned tags (control 
task). The tags are assigned by random but 
have the same distribution as POS tags.

They define selectivity as the difference of 
accuracy on a control and a linguistic tasks.

Over-Fitting to Data

46Criticism of Probing

Figure from Lena Voita’s blog

https://lena-voita.github.io/posts/
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Over-Fitting to Data
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Figure: Selectivity is difference between averaged correlations for DEP, LEX, POS 
structures and  RAND



Elazar et al. (2021) argue that to explain the 
model’s behaviour we should identify the 
information that is used rather than the 
information that is encoded by the model.

They propose Amnesic Probing: selectively 
remove information encoded in the 
representation and observe the change in the 
performance on the main task (language 
modeling).

Is Probed Information Really Useful for LM

48Criticism of Probing



Controlling Bias with Probes



Figure : Probable manifestation of gender bias in 
Machine Translation  Stanovsky et al. (2019)

Introduction Experiments Next steps Q&A

Bias in the Model

Understanding how knowledge is 
encoded in  neural networks can help 
combat unwanted  behaviors, such 
as predictions based on  spurious 
correlations ~ bias

50Controlling Bias with Probes
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Controlling Bias with Probes

doctor (he/him)

doctor (she/her)

nurse (he/him)

nurse (she/her)

factual gender

gender bias
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Interpreting Attention: Background
Past works:

• Vig and Belinkov 2019 showed that in some language model (GPT-2) heads 
attention is  higher for pairs of tokens that are in a specific dependency relation.

• Raganato and Tiedemann 2018 induce dependency trees from each 
self-attention matrix  of Transformer with maximum spanning tree algorithm. 
They obtain the trees which are  on pair with right-branching chains.

• Clark et al. 2019 uses weighted average of all heads of language model (BERT) 
to  induce dependency tree. This method gives much better results than using 
each single  head.

#
#
#
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BERT and Dependency Relations
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BERT and Dependency Relations

Previous works showed that individual BERT attention heads tend to encode 
particular  dependency relations.

We identify:
• Abstract heads (encode dependency of multiple labels)
• Specific heads (separate one relation type into multiple subtypes)

We show a method how to extract labeled dependency trees (52% UAS, 22% LAS 
on  English UD).

A small  town  with   two minarets glides by .



Closing Remarks



ÚFAL at Charles University

Institute of Formal and Applied Linguistics 

(ÚFAL)

● Established in 1990 (beginnings in the 60s)

● 20 Academic Staff and 29 Researchers

● 41 Ph.D. Students

● Research cluster: >2000 CPUs; >100 GPUs
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