
Harnessing the CRF complexity with
domain-specific constraints.

The case of morphosyntactic tagging of a
highly inflected language.

Jakub Waszczuk
Institute of Computer Science, Polish Academy of Sciences

Jakub.Waszczuk@ipipan.waw.pl

ABSTRACT
We describe a domain-specific method of adapting conditional random fields (CRFs) to mor-
phosyntactic tagging of highly-inflectional languages. The solution involves extending CRFs
with additional, position-wise restrictions on the output domain, which are used to impose con-
sistency between the modeled label sequences and morphosyntactic analysis results both at the
level of decoding and, more importantly, in parameters estimation process. We decompose the
problem of morphosyntactic disambiguation into two consecutive stages of the context-sensitive
morphosyntactic guessing and the disambiguation proper. The division helps in designing
well-adjusted, CRF-based methods for both tasks, which in combination constitute Concraft, a
highly accurate tagging system for the Polish language available under the 2-clause BSD license.
Evaluation on the National Corpus of Polish shows that our solution significantly outperforms
other state-of-the-art taggers for Polish – Pantera, WMBT and WCRFT – especially in terms of
the accuracy measured with respect to unknown words.

KEYWORDS: morphosyntactic tagging, conditional random fields, Polish.

1 Introduction

Morphosyntactic tagging is one of the basic problems in Natural Language Processing (NLP),
which can be described as choosing most appropriate morphosyntactic descriptions for each
word in the particular sentence. We ignore the problem of lemma-ambiguity in our work,
since it doesn’t occur often within the context of highly-inflectional languages like Polish or
Czech (Smith et al., 2005), and concentrate on the problem of choosing correct values of
grammatical attributes. Numerous methods have been proposed as a solution to the tagging
problem, ranging from rule-based with hand-crafted rules, through transformation-based with
rules automatically extracted from a dataset, to stochastic methods like hidden Markov models
(Jurafsky and Martin, 2008) or linear-chain conditional random fields (Lafferty et al., 2001;
Sutton and Mccallum, 2006). We focus on stochastic methods in this work.

Best solutions for the English language yield tagging accuracy exceeding 97%, but methods
designed for one language do not necessarily solve problems inherent to another one. In case
of highly-inflectional languages the first (and rather technical) obstacle is the complexity of the
morphosyntactic tagset. Polish tags carry information about a number of grammatical attributes
– part of speech (POS), case, number, gender etc. – with 13 grammatical categories in total. The
Polish tagset used within the 1-million-word National Corpus of Polish (NCP) (Przepiórkowski
et al., 2010) is a positional one: first position of the tag represents the grammatical class and
subsequent positions contain category values. In the NCP tagset the first position determines
the set of grammatical categories (some obligatory, some optional) used in conjunction with
the class. For example, the subst:sg:nom:m1 tag describes a singular (sg) human masculine
(m1) noun (subst – substantive) in the nominative case (nom).

There are more than 1000 morphosyntactic tags which can be directly extracted from the NCP
corpus. It makes the application of methods, which do not scale with the number of tags very
well, hard in practice. One of such methods is the conditional random fields (CRFs) formalism,
with tagging complexity which is quadratic in the number of tags1 and with expensive global
training process2. After the introduction of CRFs within the field of NLP (Lafferty et al., 2001)
many methods have been developed in order to exploit their benefits (conditional, feature-
rich modeling) while not being restrained by the expensive, global training process of CRFs
at the same time. Collins (2002) has shown that by using discriminative methods hidden
Markov models (HMMs) can be trained to achieve comparable performance. Toutanova et al.
(2003) have proposed tagging with cyclic dependency network, an alternative to CRFs with
similar advantages and, additionally, a much less expensive training procedure. In case of
CRFs, Sokolovska et al. (2009) have shown that when the set of bigram features is small, the
sparse forward-backward recursions method can be used to significantly speed-up the training
process. Other optimization techniques, which make it possible to use CRFs to solve large-scale
problems (with large output space, in particular), have been described in (Lavergne et al.,
2010). However, all these alternatives either deprive us from the pure context of CRFs, or
require some additional assumptions and complicate the implementation. We describe a simple
extension of CRFs which makes them better suited to the morphosyntactic tagging and partially
solves the problem of high computational cost of the training process. Moreover, it can be used
together with more implementation-specific optimizations mentioned above.

1In case of the simple first-order model.
2Assuming that training is performed with respect to the standard log-likelihood function.

We show that by integrating morphosyntactic analysis results into the internals of CRFs it is
easy to obtain a high-quality, efficient solution of the tagging problem, even for a language
with rich morphosyntactic structure like Polish. Our method can be used within the context
of any language for which a high-quality morphosyntactic analysis tool exists. The analyzer
should conform to the principle that, for any given input word, the resulting set of potential
morphosyntactic tags is either complete (all theoretically possible interpretations are included)
or empty (the tool doesn’t recognize the word). Partial results can harm the tagging performance
because our method always chooses tags consistent with the analysis output. The current
implementation requires that tags are represented in a positional form, but this requirement is
of a technical nature and it could be easily relaxed. The only assumption which is actually made
by the disambiguation method is that tags can be divided into relatively independent parts
which are subsequently modeled in separate CRF layers. In practice, when the size of the tagset
is small and only one disambiguation layer is sufficient, there are virtually no requirements
about the form or structure of the tagset.

The rest of this document is organized as follows. First we describe the constrained version of
CRFs (section 2), which provides a way to restrict sets of possible output labels on individual
sentence positions. Restrictions are used to impose consistency between morphological analysis
results and CRF output labels. Next we show how the introduced mathematical formalism can
be used to perform a context-sensitive morphosyntactic guessing (section 3) and disambiguation
(section 4) which together constitute Concraft3, a state-of-the-art tagging system for the Polish
language. Final evaluation on the National Corpus of Polish, carried out in accordance with the
guidelines described in (Radziszewski and Acedański, 2012), is described in section 6.

2 Constrained Conditional Random Fields

We now recall the definition of conditional random fields and define their extension which we
call constrained conditional random fields (CCRFs) throughout this paper. Similar modification
of the CRF formalism can be found in (Smith et al., 2005), while comprehensive introduction
to CRFs can be found in (Lafferty et al., 2001; Sutton and Mccallum, 2006). CCRFs is a simple
but useful extension which employs constraints over individual labels in the output sequence.
We represent each constraint as a set of labels, to which a label on the particular position
in the sentence must belong. Those constraints are satisfied both during the inference and
parameters estimation algorithms, thus improving their efficiency and allowing the model to be
better adapted to a particular problem domain. Within the context of morphosyntactic tagging,
constraints can be used to enforce consistency between results of morphosyntactic analysis and
the tagging process itself.

For simplicity we consider only a first-order (with features defined over two subsequent labels
at maximum) HMM-like (no bigram features) conditional random fields. Without the loss of
generality we assume that (i) each word in the input sequence is represented by a descriptive
set of observations, with each observation capturing some aspect of the word itself or its context,
(ii) features can refer only to observations related to the current word. This design decision
makes it easier to separate the notion of conditional knowledge, supplied in form of the input
sequence, from the internal workings of the CRF implementation. Definitions and equations
given below can be extended to describe models of higher order and models with more complex
feature types.

3Available at http://hackage.haskell.org/package/concraft under the 2-clause BSD license. The
acronym stands for Constrained Conditional Random Fields Tagger.

http://hackage.haskell.org/package/concraft

The formalism described in this section, as well as its generic extension to the second-order
case, have been implemented as separate Haskell programming language modules4 which
can be used with other applications in mind (chunking or named entity recognition, for
instance). The Haskell language combines advantages of high-level programming and type
safety with excellent performance of generated programs5, which makes it an ideal candidate
for conceptually complex mathematical tasks. Both libraries have been used to perform tests
described in this paper, as a statistical core of the Concraft tool.

2.1 Definition

Let O be a set of observations, Y a set of labels and X = 2O. Let x= (x1 ∈ X , . . . , xn ∈ X) be an
input sequence of words, where each word is represented by a descriptive set of observations,
and y = (y1 ∈ Y, . . . , yn ∈ Y) an output sequence of labels. We also assume that x i = ; and
yi = δ for i < 1 ∨ i > n, where δ is a dummy label not belonging to the Y set. First-order
linear-chain CRF defines a conditional probability of the sequence of labels y given the sentence
x as a normalized product of position-wise model potentials:

pθ (y|x) = Zθ (x)
−1

n
∏

i=1

φθ (x i , yi , yi−1) (1)

where θ = {θk}Kk=1 is a set of parameters, with the k-th parameter representing the contribution
of the k-th feature to the overall probability, φθ (x i , yi , yi−1) denotes a potential on the i-th posi-
tion of the sentence and Zθ (x) is a normalization factor. Potential φ is defined as an exponential
of the sum of parameters related to features present within the context of (x i , yi , yi−1):

φθ (x i , yi , yi−1) = exp

K
∑

k=1

θk fk(x i , yi , yi−1)

!

(2)

The implemented CCRF handles two kinds of features. A unigram feature (u ∈ Y, o ∈ O) takes
responsibility for modeling dependency between a word described by the observation o and
the label u assigned to that word. A transition feature (v ∈ Y ∪ {δ}, u ∈ Y), on the other hand,
serves to model dependency between adjacent labels v (which is equal to δ when considering
the first position of the sentence) and u. Therefore, the form of the feature function fk depends
on what kind of feature, a unigram one or a transition one, it represents:

fk(x i , yi , yi−1) =
�

1(yi = u, o ∈ x i) if k identifies unigram feature (u, o)
1(yi = u, yi−1 = v) if k identifies transition feature (v, u) (3)

where 1(cond.) is equal to 1 when the given condition holds and to 0 otherwise.

Finally, the normalization factor Z is defined as

Zθ (x) =
∑

y∈Y n

n
∏

i=1

φθ (x i , yi , yi−1). (4)

4Available at http://hackage.haskell.org/package/crf-chain1-constrained and
http://hackage.haskell.org/package/crf-chain2-generic under the 2-clause BSD license.

5We relate to the efficiency of optimized programs compiled with a Glasgow Haskell Compiler.

http://hackage.haskell.org/package/crf-chain1-constrained
http://hackage.haskell.org/package/crf-chain2-generic

2.2 Constraints
Let r = (r1 ⊆ Y, . . . , rn ⊆ Y) be a sequence of non-empty constraints over individual labels
within the given sentence x. For convenience we assume that ri = {δ} for i < 1 ∨ i > n.
Definition 1 can be easily modified to take those constraints into account. In particular, the
model assigns probability 0 to all label sequences which are inconsistent with the constraints
imposed by r:

pθ (y|x, r) =
�

Zθ (x, r)−1
∏n

i=1φθ (x i , yi , yi−1) if y ∈
∏n

i=1 ri
0 otherwise

(5)

The normalization factor within the constrained context is defined as

Zθ (x, r) =
∑

y∈
∏n

i=1 ri

n
∏

i=1

φθ (x i , yi , yi−1). (6)

2.3 Inference
We describe here two methods of inference using CCRFs: finding the most probable label
sequence given the sentence and assigning marginal probabilities to individual labels from
restricted sets. The first one is used within the context of morphosyntactic disambiguation
(section 4), second one within the context of guessing (section 3). Throughout this section we
assume that input sentence x, constraints r and parameters θ are fixed.

2.3.1 Decoding

Given a sentence x and constraints r, the CCRF model with parameters θ can be used to find
the most probable label sequence y∗. Since the normalization factor Zθ (x, r) doesn’t depend
on the label sequence y, the task is equivalent to finding label sequence which maximizes the
potential.

y∗ = argmax
y∈
∏n

i=1 ri

n
∏

i=1

φθ (x i , yi , yi−1)

!

(7)

The task of finding y∗ is often called decoding. It can be solved efficiently using the max-product
algorithm (Wainwright and Jordan, 2008), which can be also employed within the context
of the constrained CRF model. Let r[i→ u] denote a sequence of constraints resulting from
substituting the i-th element in the sequence r with the singleton {u}. For i ∈ [0..n+ 1] and
u ∈ ri we denote by ωi(u) the partial, maximum cumulative potential acquired between the
beginning of the sentence and the i-th position assuming, that label at position i takes the value
of u ∈ ri .

ωi(u) = max
y∈
∏i

j=1 r[i→u] j

i
∏

j=1

φθ (x j , y j , y j−1)

 (8)

It can be also defined in a recursive way:

ωi(u) =
�

maxv∈ri−1
ωi−1(v) ·φθ (x i , u, v) if i > 0

1 otherwise
(9)

The recursive definition, together with dynamic programming or memoization techniques, can
be used to find the most probable label sequence y∗ (the sequence corresponding to the value
ωn+1(δ)) in an efficient way.

2.3.2 Marginal Probabilities

The CRF models conditional probability of the entire label sequence, but conditional marginal
probabilities also can be computed in an efficient way. Marginal probabilities can be used in
the output of the CRF instead of (or together with) the decoded sequence y∗. In this work
we use marginal probabilities to perform context-sensitive morphosyntactic guessing, which is
described in section 3.

Let i ∈ [0..n+ 1] and u ∈ ri . We define a forward potential sum as

αi(u) =
∑

y∈
∏i

j=1 r[i→u] j

i
∏

j=1

φθ (x j , y j , y j−1).

 (10)

The notion of a forward potential sum is similar to that defined by the formula (8), but instead
of maximizing the cumulative potential between the first and the i-th position we are summing
up all cumulative potentials between positions 1 and i of the input sentence. Backward potential
sum βi(u) is a reverse concept corresponding to the sum of cumulative potentials between
positions i+ 1 and n given that the value of the i-th label is equal to u.

It should be noted that both forward and backward potential sums can be used to compute the
value of the normalization factor, since Zθ (x, r) = αn+1(δ) = β0(δ) for the input sentence x
and constraints r. Furthermore, it can be shown that all three concepts provide the following
formula to determine the marginal probability of label u at position i:

pθ (yi = u|x, r) = αi(u) · βi(u) / Zθ (x, r) (11)

Finally, the efficient algorithm for forward potential sum computation is known as a sum-product
algorithm (Wainwright and Jordan, 2008) and it is based on the following recursive definition
of the forward potential sum:

αi(u) =

¨
∑

v∈ri−1
αi−1(v) ·φθ (x i , u, v) if i > 0

1 otherwise
(12)

which has an analogous structure to the definition presented in equation (9). Backward
potential sum β can be recursively defined in a similar way.

2.4 Parameters estimation

We note only that we apply a Stochastic Gradient Descent method in order to find parameter
values which maximize log-likelihood of a training dataset with a Gaussian prior over the
parameter values.

3 Morphosyntactic Guessing

In this section we describe an adaptation and an application of the formalism described in
section 2 to the morphosyntactic guessing. A dictionary of known forms can be used in order
to find all possible interpretations – tags and base forms – of the given word. This language
processing phase is called morphosyntactic analysis. Unfortunately, due to incompleteness of
data resources or spelling errors some forms may not be recognized. Morphosyntactic tagging
of such words, called unknown throughout this paper, is severely hampered. The average

number of morphosyntactic tags assigned by the morphosyntactic analysis tool to known words,
computed on the basis of the NCP million subcorpus, is approximately equal to 4. In case of
unknown words we have to consider every possible morphosyntactic tag present in the tagset.
This difficulty is reflected in the evaluation results of taggers designed for Polish (see section
6). Results of the morphosyntactic analysis are especially helpful in selecting correct values of
lexeme-specific attributes like gender, since it is often hard to determine their values even on
the basis of the occurrence context.

By morphosyntactic guessing we mean a method of determining sets of possible morphosyntactic
tags for unknown words in the sentence. Thus, it can be thought of as a complement problem
to the morphosyntactic analysis. Conceptually, the division of the tagging process into three
separate steps of analysis, guessing and disambiguation, is a superficial one. It can be also
pointed out that context-sensitive guessing is – from a theoretical, not practical, point of view –
a generalization of the disambiguation process. Disambiguator is just a guesser which always
proposes one possible tag in the resulting sequence. Yet, it is easier to reason about those three
processing stages and to develop efficient tools designed to solve them separately. For example,
if we ignore the problem of unknown words completely, we will be constrained to use methods
which manage to handle adjacent words with more than 1000 possible tags at the stage of
disambiguation. In particular, the method described in section 4 would not be able to handle
such cases in an efficient way.

3.1 Model Adaptation

To use the constrained model described in section 2, every input word has to be linked with a
list of possible morphosyntactic tags. Each tag is treated as an atomic entity, that is two tags are
considered to be different if they differ on at least one grammatical attribute value. Since the
method doesn’t adopt any assumptions about the structure of morphosyntactic tags, it is very
flexible and can be applied to a broad class of natural languages. In the case of known words the
choice of possible labels is simple – morphosyntactic analysis is a source of label restrictions. For
each unknown word we should consider all morphosyntactic tags from the tagset as potential
interpretations. We use a simple heuristic instead, described in (Radziszewski, 2013), where
a special set U – a set of all labels assigned to unknown words in the training corpus – is
prepared. Since the U set can be in practice much bigger (≈ 300 tags in NCP experiments) than
the average set proposed by the analyzer and it is often the case that two adjacent words are
unknown, we use the first-order model for the task of morphosyntactic guessing.

While there are many possible ways of using the CCRF to perform actual guessing, we have
tested only the simplest one so far. For each unknown word in the input sequence, with the set
of restrictions r fixed to U , we take k most probable labels according to marginal probabilities
determined by the CCRF (see 2.3.2) for some arbitrarily chosen value of k.

To speed-up computations, especially within the context of known words, we implement sparse
forward-backward recursions (Sokolovska et al., 2009; Lavergne et al., 2010). To make this
optimization effective, a set of model features is constructed with respect to words and chosen
labels from the training data T , but not with respect to restrictions in T . It is important to note
that we can safely apply this optimization within the context of the sum-product algorithm
(used during the training phase), but not with the max-product algorithm (used in decoding).
Fortunately, to perform guessing we do not have to use max-product algorithm, since only the
sum-product is needed to find marginal probabilities of individual labels.

3.2 Observations

A common solution to the morphosyntactic guessing problem is to propose the set of possible
tags on the basis of orthographic features acquired for the particular word (e.g. prefixes and
suffixes). By using the CRF sequential model we extend this method to take tags assigned on
adjacent positions into account. The advantage of such a solution is that the guesser is able to
reject morphosyntactic interpretations on the basis of two factors simultaneously: the context
and orthographic features of the word.

Our observation schema contains the following set of observations, which are subsequently
used to construct the set of unigram features:

• Lowercase prefixes and suffixes of lengths 1 and 2,
• A Boolean value indicating if the word is known,
• Packed shape of the word, and information whether the word is positioned at the

beginning of the sentence, combined into one observation.

where each observation is related to the current word, the shape of a word is a string with all
lowercased characters replaced by ’l’, uppercased characters replaced by ’u’, digits replaced by
’d’ and any other character replaced by ’x’ („Coling-2012” → „ulllllxdddd”), while a packed
shape is a shape with all duplicate code characters removed („ullllxdddd”→ „ulxd”).

word observations choice interpretations

Szef { 1.S, 2.Sz, 3.f, 4.ef
, 5.True, 6.ul-True }

subst:sg:nom:m1 { subst:sg:nom:m1 }

administracji { 1.a, 2.ad, 3.i, 4.ji
, 5.True, 6.l-False }

subst:sg:gen:f { subst:sg:gen:f
, subst:sg:dat:f
, subst:sg:loc:f
, subst:pl:gen:f }

Wołodymyr { 1.W, 2.Wo, 3.r, 4.yr
, 5.False, 6.ul-False }

subst:sg:nom:m1 U

Łatwyn { 1.Ł, 2.Ła, 3.n, 4.yn
, 5.False, 6.ul-False }

subst:sg:nom:m1 U

Table 1: Morphosyntactically analyzed sentence Szef administracji Wołodymyr Łatwyn – Chief
administrator Wołodymyr Łatwyn prepared for the CCRF guessing. The observations column
includes observations extracted for individual words according to the guessing observation
schema. The choice indicates the morphosyntactic tag correct within the context. In the last
column results of morphosyntactic analysis are presented. In case of unknown words the U set
designates the set of potential interpretations.

Prefix and suffix observations are the basic type of information needed to determine the set
of possible morphosyntactic interpretations of the given word. By using only short affixes we
can be sure to get highly accurate estimations of corresponding parameters. The model learns
dependencies between prefixes/suffixes and morphosyntactic tags mostly on words from the
corpus which are known, since they are far more frequent in the training material than the
unknown words. After that it is able to use this knowledge to guess interpretations of unknown
words. Packed shape might be helpful to distinguish some frequent classes of unknown words –

named entities and numbers, in particular. Information about the fact that the word is known
or not is also provided. It allows the guesser to exhibit a slightly different behavior on known
and unknown words. We do not employ the standard observation – full orthographic form – on
purpose. It would probably make the model more accurate with respect to known words, but
our main goal is to obtain accurate estimations of prefix- and suffix-specific parameters.

Table 1 presents a sample sentence prepared for the subsequent processing with the CCRF
guessing module. For each word the set of observations is determined on the basis of the
observation schema described above. Observations are extended with additional prefixes
identifying the kind of the particular observation. Every observation is a string, but from a
technical point of view observations can be represented by more complex structures as long as
their data type is totally ordered, which is the only assumption about the form of observations
made on the level of the CCRFs implementation. The presented structure can be used to perform
subsequent CCRF processing in the following way:

• The ’observations’ column is translated to the input sequence x,
• The ’interpretations’ column is converted to the sequence of CCRF constraints r,
• The contents of the ’choice’ column (if any) can be used as the output sequence y.

All three columns can be used as the input to the CCRF training process. To perform the actual
guessing only the observations and interpretations columns need to be known, of course.

word guessing results

Szef { subst:sg:nom:m1 }

administracji { subst:sg:gen:f , subst:sg:dat:f , subst:sg:loc:f , subst:pl:gen:f }

Wołodymyr { subst:sg:nom:m2, subst:sg:nom:n, subst:sg:gen:m3
, subst:pl:nom:m1, subst:sg:nom:m3, subst:sg:nom:m1
, adj:sg:gen:m3:pos, subst:sg:loc:f, qub, brev:npun }

Łatwyn { subst:sg:gen:m3, subst:sg:nom:m2, subst:sg:nom:n
, subst:sg:gen:m1, subst:sg:gen:f, subst:sg:nom:m3, subst:sg:acc:n
, subst:sg:nom:m1, subst:pl:gen:m1, subst:sg:nom:f }

Table 2: Results of guessing interpretations of unknown words.

Table 2 shows the results of the guessing process performed on the phrase presented in table 1
with k = 10. We do not show the ’choice’ column, since it is not used within the process, and
the ’observations’ column, which has been relevant only for input. Potential interpretations
assigned to known words are not influenced by the guesser. The guessing has been performed
using the model trained on the part which has not contained the phrase used as an example.

Since the guesser always proposes multiple morphosyntactic tags6 for individual unknown
words in the input, there must be also a lot of incorrect (w.r.t. the context) or even theoretically
impossible (w.r.t. the word in question) interpretations in the output. The ’subst:sg:loc:f’ tag is
clearly not a possible interpretation of the masculine ’Wołodymyr’ lexeme, but this fact is hard to
determine without any reference to the word in the external dictionary. Therefore, to estimate
the accuracy of the guesser we should only take the presence (or absence) of the correct tag

6Assuming that k > 1 and |U |> 1.

in the output set into account. As long as the correct tag is included in the output, it is of no
particular concern to us what other output interpretations are. Looking at the ’guessing results’
column in table 2 we can see that the guesser successfully determined that noun (substantive)
is the most probable class for both unknown words, ’Wołodymyr’ and ’Łatwyn’, in the example.
It has been also able to determine nominative case with a high confidence. The gender attribute
is the biggest source of ambiguity in the output results – since the first-order model is used to
perform the guessing, the method is not able to agree gender values of unknown words with the
gender of the first word in the sentence, ’Szef’, which is known to represent a human masculine
(m1). Finally and most importantly, the correct full morphosyntactic tag (subst:sg:nom:m1) is
included in the output for both unknown words.

4 Morphosyntactic Disambiguation

The last and the most important step of morphosyntactic tagging is a disambiguation phase. It
involves choosing for each word, from the set of possible tags, the most appropriate one in the
context of the particular sentence. It can be resolved without the prior morphosyntactic analysis
or guessing, but these steps – as long as they demonstrate low false negative error rate – should
only accelerate disambiguation (thanks to the reduced search space) and improve its accuracy.

Second-order stochastic methods are often chosen as a solution to the tagging problem, see
(Collins, 2002; Smith et al., 2005), and we use the second-order flavor of constrained CRFs for
disambiguation as well. The complexity of the task is no longer problematic, because sets of
possible interpretations are strongly limited for individual words. If a word is known, the set of
potential labels is provided by the morphosyntactic analyzer. Otherwise, potential labels are
restricted to the set of the k most probable labels determined at the stage of morphosyntactic
guessing described in the previous section, where k is the parameter of the guesser.

4.1 Model Adaptation

In case of the disambiguation problem we are more concerned about the performance of the
solution in terms of quality than in terms of speed. We rely on the analysis and guessing
tools in the second aspect and, in particular, on their ability to reduce the search space for the
disambiguator. Therefore, we have chosen to implement a second-order variant of CCRF which
incorporates a dense feature set (constraints from the training set are taken into account during
the construction of the feature set) with no sparse forward-backward recursions optimization.

The second-order characteristic means that relations between three subsequent labels are
modeled directly within the CRF. The sparse forward-backward recursions optimization has not
been implemented in this case because it doesn’t bring any improvements when the set of model
features is dense. An important difficulty stems from the fact that we use the second-order
model within the context of a language with more than 1000 potential morphosyntactic tags.
It is easy to deduce that there are more than 109 possible transition features and, even with
additional constraints taken into consideration, there are more than 1.5∗107 transition features
which can be extracted from the NCP corpus directly. It is not only hard to store the model with
so many features, but it can also cause problems related to data sparseness and make the model
prone to overfitting.

To alleviate this problem we change our treatment of morphosyntactic tags as atomic labels and
regard them as complex structures. We also extend our second-order CCRF to model multiple
morphosyntactic layers. Tags are divided into separate label layers according to a configuration

file. The file specifies the number of layers and the destination layers (zero, one or more) for
each grammatical attribute (POS or grammatical category). Layers are modeled separately (i.e.,
features cover label values from exactly one layer), but not independently. Finally, labels in
individual layers are treated as atomic entities.

This method is also rather flexible and could be used with respect to a language with other
tagset structure than the positional one. The only important assumption which is really adopted
here is that it is possible to divide a tag into parts which are relatively independent. For instance,
in case of the partitioning which assigns case values to the first layer and number values to the
second layer, implicit assumption is being made that – given observations – there is no direct
dependency between those values apart from the dependency enforced by constraints. If we
ignore constraint-related dependencies we can write it in a more formalized way: the case
value of the i-th word is conditionally independent of its number value (and, in fact, all other
number values in the sentence) given case values of words in positions i− 2, i− 1, i+ 1 and
i+ 2 and observation values related to the i-th word.

4.2 Observations

In the case of disambiguation we use a richer set of observation types than within the context of
guessing, yet it is still rather a minimalistic one. Let wi denote the word at the i-th position in
the input sentence. The following set of observations is used with respect to the i-th position:

• Lowercase orthographic forms of words wi−1, wi and wi+1,
• If the word wi is unknown:

– Lowercase prefixes and suffixes of length 1, 2 and 3 of wi ,
– Packed shape of wi and information, whether wi is positioned at the beginning of

the sentence, combined into one observation.

The shape observation type has been mentioned earlier within the context of the guesser’s
observation schema. We haven’t recorded any improvements in the tagging quality when using
prefix, suffix or shape features as observations for known words. Therefore, we do not use them
in our final model.

4.3 Features

Let L be a number of layers and y(l) denote a part of the morphosyntactic tag y assigned to
the l-th layer for l ∈ {1, . . . , L}. The layered model handles unigram (l, u, o) and transition
(l, w, v, u) features in a similar way to that specified in equation 3. However, in the layered case
features are enriched with value l identifying the layer to which the particular feature should
be related. Moreover, the form of the feature function fk changes due to the second-order
character of the model.

fk(x i , yi , yi−1, yi−2) =
�

1(yi(l) = u, o ∈ x i) k identifies (l, u, o)
1(yi(l) = u, yi−1(l) = v, yi−2(l) = w) k identifies (l, w, v, u) (13)

While the implementation is general and follows the specification described above, all tests
within this work (most importantly, the evaluation) were performed using the configuration
inspired by (Acedański, 2010). Tags are divided into two layers, with POS, case and person in
the first layer and all the other grammatical categories in the second layer.

5 Related Work

We compare our method with solutions for morphosyntactic tagging of highly inflectional
languages, the Polish language in particular. However, the method described in (Smith et al.,
2005) – which bears many similarities with our solution – has been successfully used in tagging
not only inflectional but also concatenative and templatic languages and we believe that our
system could be also adapted to handle them.

Radziszewski (2013) describes WCRFT, an implementation of a tiered tagging method in which
a cascade of independently trained linear-chain first-order CRF models is used to disambiguate
input in a multi-pass manner: POS values are resolved at first, then case values, gender values
and so on. Our system relies on a more general method of tag partitioning and performs
disambiguation on all layers simultaneously, so that the choice made in higher layers can
propagate down into lower layers, which is not possible in case of a cascade. Besides, our
system uses second-order model for disambiguation which allows to capture dependencies
between three subsequent tags in an idiomatic way. WCRFT uses the simple heuristic mentioned
in section 3.1 to ascertain potential interpretations of unknown words and, optionally, a
morphosyntactic guesser developed within a rule-based TaKIPI tagger (Piasecki, 2007; Piasecki
and Radziszewski, 2007). It is an a tergo guesser, which uses pseudo-suffixes to infer potential
morphosyntactic interpretations of unknown words. While it also proposes base forms in its
output, it doesn’t make use of context-specific information and often commits false negative
errors (does not include correct morphosyntactic tags in its output). Since the disambiguation
module in not designed so as to correct errors performed on the level of guessing, those false
negative errors propagate to subsequent processing phases.

Pantera (Acedański, 2010) is an implementation of the Brill method (Brill, 1992) adapted
for the specifics of highly inflectional languages. Pantera also adopts multi-pass method for
morphosyntactic tagging without the possibility of downward propagation of disambiguation
choices. Tag partitioning in Pantera is a configurable process and the evaluation of Pantera
involved the same tag partitioning as the one used for the evaluation of our system: POS, case
and person attributes are placed in the first layer, while the rest of grammatical categories is
stored in the second layer (Acedański, 2010).

A variant of CRF, where each label must belong to a restricted set of interpretations recognized
by a morphosyntactic analysis tool, has been previously used in tagging Korean, Arabic and
Czech language (Smith et al., 2005). While the Czech model exhibits similarities to the
model described in this paper, there are also important differences between them. In (Smith
et al., 2005) there is no special treatment of unknown words. We, in comparison, introduce
the context-sensitive morphosyntactic guessing method designed specifically for them. All
grammatical attributes are taken into account in our model for Polish, while the model for
Czech includes only the four main grammatical attributes – POS, case, number and gender – thus
rendering it incapable of disambiguating between values of the remaining attributes. In order
to make the training process feasible, Smith et al. (2005) employ factored training, dividing
features into five separate classes and estimating parameters within each class independently.
We do not adopt such parameter-level independence assumptions and perform global training
using the Stochastic Gradient Descent method, yet we achieve an empirical performance which
is several times better in terms of the training time. According to Smith et al. (2005), training
the POS-specific part of the model for Czech on 768K words from the Czech PDT corpus takes
up to two weeks on the 2GHz Pentium machine. Our system needs less than 8 hours to learn

parameters for guessing (3 hours) and disambiguation (5 hours) on 1M words from the NCP
corpus using one core of the 2.40GHz Xeon E5620 machine.

6 Evaluation

Evaluation of Concraft has been performed on the one-million-word, balanced NCP subcorpus
(Przepiórkowski et al., 2010). In order to be able to compare the tool with other taggers available
for Polish, we have followed guidelines provided by Radziszewski and Acedański (2012).
It describes a fair method of taggers evaluation, which involves obligatory resegmentation
(sentence splitting and tokenization) and reanalysis of the evaluation corpus part. The advantage
of this evaluation method is that it measures tagging quality in an environment as close as
possible to the real usage case, given the available resources. No artificial assumptions of perfect
segmentation or perfect morphosyntactic analysis are made, which was often the case with
earlier evaluations of tagging systems (Acedański, 2010; Radziszewski and Śniatowski, 2011)
which reported much higher results than could be expected in the real-world usage.

Our tool does not include any sentence splitting, tokenization or morphosyntactic analysis
modules yet. Results presented below have been acquired using the preprocessing functionality
provided by the MACA tool (Radziszewski and Śniatowski, 2011). For each cross-validation
fold, the guesser is trained on the reanalyzed training part. The resulting model is used to guess
potential interpretations of unknown words both in the training and the evaluation part, with k
(number of retained labels for each unknown word) set to 10. Next, the disambiguation tool is
trained on the training part with tags already guessed. Finally, the model obtained is used to
perform disambiguation on the evaluation part (processed beforehand by the guesser).

Tagger Acclower Accupper AccK
lower AccU

lower
Pantera 88.99% 89.28% 91.27% 14.74%
WMBT 89.71% 90.04% 91.20% 41.45%
WCRFT 90.34% 90.67% 91.89% 40.13%
Concraft 91.12% 91.44% 92.10% 59.19%

Table 1: Average accuracy measures obtained by individual taggers on the NCP corpus.

Table 1 presents cross-validation results of our system in comparison to the state-of-the-art
taggers for Polish: Pantera (Acedański, 2010), WMBT (Radziszewski and Śniatowski, 2011) and
WCRFT (Radziszewski, 2013). Pantera and WCRFT have been described in the 5 section. WMBT
(Radziszewski and Śniatowski, 2011) and WCRFT (Radziszewski, 2013) both represent a class
of tiered tagging methods (Tufiş, 1999), using a cascade of models to perform disambiguation.
WMBT uses a memory-based learning method to model individual tiers, while WCRFT uses
CRFs for this task. All tools have been evaluated on the same extract of the NCP corpus, and
with respect to exactly the same corpus partitioning. Numbers included in the first three rows
have been reported in (Radziszewski and Acedański, 2012) and (Radziszewski, 2013).

We report separate evaluation statistics corresponding to different assumptions about the
system’s behavior in the situation of tokenization-level errors. Accuracy lower bound Acclower
corresponds to the situation when each tokenization error is penalized and treated as a tagging
error. Conversely, accuracy upper bound Accupper doesn’t take tokenization errors into account
– the measure is computed as if for each token from the reference corpus associated with the
incorrectly tokenized part the tagger made the correct decision. Therefore, assuming perfect
tokenization, accuracy of the tagger would be somewhere between Acclower and Accupper . Next

two statistics, AccK
lower and AccU

lower , show lower bound accuracy with respect to known and
unknown words, respectively. Sentence splitting errors are not taken into account. Detailed
description of individual statistics can be found in (Radziszewski and Acedański, 2012).

The results show that our system significantly outperforms other taggers, especially within
the context of unknown words. They suggest that feature-rich stochastic methods perform
better than transformation-based methods (represented by Pantera in the comparison). We
suspect that the main reason of the gap between the WCRFT and Concraft performance is the
difference in the choice of guessing methods. Our context-sensitive guessing method has been
specifically designed as a preliminary filter, which reduces the number of possible interpretations
of unknown words. The TaKIPI guesser used within the WCRFT tool during the evaluation
yields too many false negatives, which cannot be corrected on the level of disambiguation.

Conclusion and perspectives

We have shown that a domain-specific modification of the CRFs formalism solves most of the
complexity-related issues inherent to CRFs with respect to the morphosyntactic tagging of
highly-inflectional languages. Not only is the modification easy to comprehend and implement,
but it can be also used in combination with other optimizations designed for CRFs in general.
We regard this as a confirmation that adapting the model to a particular problem domain should
be the foremost optimization considered when designing a solution of a high quality.

The comparison of Concraft and WCRFT doesn’t clearly show which tagging system would
perform better if we used both of them in combination with the same guesser and this question
should be further investigated. In particular, we plan to evaluate the guessing and the disam-
biguation components of the Concraft system separately. The current state of the disambiguation
module still leaves some room for improvement on the level of tag partitioning and observation
schema configuration. The CRF implementation can be further generalized by expanding the
set of features with bigrams, trigrams or features capturing dependencies between individual
tag layers (between parts of the same morphosyntactic tag for instance).

The guessing model can be used to perform guessing in a few reasonable ways. The first one,
used within this work, is to output the k most probable labels from the U set for each unknown
word in the sentence. Another option is to choose all labels with marginal probability higher
than some arbitrarily chosen threshold. This solution has the advantage of making the size
of the label set depend on probabilities of individual labels, so that very improbable labels
do not get into the result even if they are in the set of the k most probable ones. Advantages
of both solutions could be aggregated in a solution which uses both the marginal probability
threshold and limits the size of the output set. The same techniques can be used to trim down
not only label sets for unknown words, but also those which are assigned to known words.
Advantage given by this solution would be a further speed up of computations on the level of
the disambiguation phase, but it could potentially harm the tagging accuracy.

Finally, it would be worthwhile to confirm the usability of the tagger by testing its performance
on another Slavic language and, afterwards, on a typologically different language (e.g. English,
German or French) for which high-quality morphosyntactic analysis tools exist.

Acknowledgments

The release of the tagger described here is supported by the CESAR project (European project
CIP ICT-PSP 271022, part of META-NET).

References

Acedański, S. (2010). A Morphosyntactic Brill Tagger for Inflectional Languages. In Loftsson,
H., Rögnvaldsson, E., and Helgadóttir, S., editors, Advances in Natural Language Processing,
volume 6233 of Lecture Notes in Computer Science, pages 3–14. Springer.

Brill, E. (1992). A simple rule-based part of speech tagger. In Proceedings of the third
conference on Applied natural language processing, ANLC ’92, pages 152–155, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Collins, M. (2002). Discriminative training methods for hidden Markov models: theory and
experiments with perceptron algorithms. In Proceedings of the ACL-02 conference on Empirical
methods in natural language processing - Volume 10, EMNLP ’02, pages 1–8, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Jurafsky, D. and Martin, J. H. (2008). Speech and Language Processing (2nd Edition) (Prentice
Hall Series in Artificial Intelligence). Prentice Hall, 2 edition.

Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001). Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling Sequence Data. In Proceedings of the
Eighteenth International Conference on Machine Learning, ICML ’01, pages 282–289, San
Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Lavergne, T., Cappé, O., and Yvon, F. (2010). Practical very large scale CRFs. In Proceedings
of the 48th Annual Meeting of the Association for Computational Linguistics, ACL ’10, pages
504–513, Stroudsburg, PA, USA. Association for Computational Linguistics.

Piasecki, M. (2007). Polish Tagger TaKIPI: Rule Based Construction and Optimisation. Task
Quarterly, 11(1–2):151–167.

Piasecki, M. and Radziszewski, A. (2007). Polish Morphological Guesser Based on a Statistical
A Tergo Index. In Proceedings of the International Multiconference on Computer Science and
Information Technology — 2nd International Symposium Advances in Artificial Intelligence and
Applications (AAIA’07), pages 247–256.

Przepiórkowski, A., Górski, R. L., Łaziński, M., and Pęzik, P. (2010). Recent Developments
in the National Corpus of Polish. In Calzolari, N., Choukri, K., Maegaard, B., Mariani,
J., Odijk, J., Piperidis, S., Rosner, M., and Tapias, D., editors, Proceedings of the Seventh
International Conference on Language Resources and Evaluation (LREC’10), Valletta, Malta.
European Language Resources Association (ELRA).

Radziszewski, A. (2013). A tiered CRF tagger for Polish. In R. Bembenik, Ł. Skonieczny, H. R.
M. K. M. N., editor, Intelligent Tools for Building a Scientific Information Platform: Advanced
Architectures and Solutions. Springer Verlag.

Radziszewski, A. and Acedański, S. (2012). Taggers gonna tag: an argument against evaluating
disambiguation capacities of morphosyntactic taggers. In Proceedings of TSD 2012, LNCS.
Springer-Verlag.

Radziszewski, A. and Śniatowski, T. (2011). Maca — a configurable tool to integrate Polish
morphological data. In Proceedings of the Second International Workshop on Free/Open-Source
Rule-Based Machine Translation.

Radziszewski, A. and Śniatowski, T. (2011). A Memory-Based Tagger for Polish. In Proceedings
of the LTC 2011. Tagger available at http://nlp.pwr.wroc.pl/redmine/projects/wmbt/wiki/.

Smith, N. A., Smith, D. A., and Tromble, R. W. (2005). Context-based morphological disam-
biguation with random fields. In Proceedings of the conference on Human Language Technology
and Empirical Methods in Natural Language Processing, HLT ’05, pages 475–482, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Sokolovska, N., Lavergne, T., Cappé, O., and Yvon, F. (2009). Efficient Learning of Sparse
Conditional Random Fields for Supervised Sequence Labelling. CoRR, abs/0909.1308.

Sutton, C. and Mccallum, A. (2006). Introduction to Conditional Random Fields for Relational
Learning. MIT Press.

Toutanova, K., Klein, D., Manning, C. D., and Singer, Y. (2003). Feature-rich part-of-speech
tagging with a cyclic dependency network. In Proceedings of the 2003 Conference of the
North American Chapter of the Association for Computational Linguistics on Human Language
Technology - Volume 1, NAACL ’03, pages 173–180, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Tufiş, D. (1999). Tiered Tagging and Combined Language Models Classifiers. pages 28–33.

Wainwright, M. J. and Jordan, M. I. (2008). Graphical Models, Exponential Families, and
Variational Inference. Now Publishers Inc., Hanover, MA, USA.

	Introduction
	Constrained Conditional Random Fields
	Definition
	Constraints
	Inference
	Decoding
	Marginal Probabilities

	Parameters estimation

	Morphosyntactic Guessing
	Model Adaptation
	Observations

	Morphosyntactic Disambiguation
	Model Adaptation
	Observations
	Features

	Related Work
	Evaluation

