
Spejd 1.3.6 - User manual

Bartosz Zaborowski

October, 2012

Contents

1 Configuration 4
1.1 Options types and default values 4
1.2 Files locations . 5

1.2.1 tagset . 5
1.2.2 rules . 5

1.3 Processing . 5
1.3.1 processingChain . 5
1.3.2 maxThreads . 6

1.4 Input data . 6
1.4.1 inputType . 6
1.4.2 inputEncoding . 7
1.4.3 inputFiles . 8
1.4.4 ignoreDisamb . 8

1.5 Output . 8
1.5.1 outputType . 8
1.5.2 discardDeleted . 8
1.5.3 backupExistingFiles 9
1.5.4 compressOutput . 9
1.5.5 compactTeiOutput . 9
1.5.6 teiSingleSyntokInterp 10
1.5.7 teiFsGroupHeads . 10
1.5.8 teiBottomUpSyntacticStructures 11
1.5.9 outputSuffix . 11
1.5.10 outputFilenameCore 12

1.6 Diagnostics . 12
1.6.1 reportInterval . 12
1.6.2 debug . 12
1.6.3 ruleMarking . 13
1.6.4 nonfatalTagErrors . 13
1.6.5 muffleTagWarnings . 13
1.6.6 tagErrorsOnlyOnTheEnd 13

1.7 Dictionaries . 14
1.7.1 Syntax of the dictionaries 14

1

1.8 Pantera configuration . 15
1.8.1 panteraDoOwnMorphAnalysis 15
1.8.2 panteraTagsetName 16
1.8.3 panteraEnginePath . 16

1.9 Spejd semantics and internals configuration 16
1.9.1 matchStrategy . 16
1.9.2 nullAgreement . 16
1.9.3 composeLimit . 17
1.9.4 memoryLimit . 17
1.9.5 leavePercent . 17
1.9.6 minComplexPercent 18
1.9.7 maxNumberOfValues 18

1.10 Morfeusz (morphological analyzer) configuration 18
1.10.1 disableMorfeusz . 18
1.10.2 morfeuszSegmentationDisambiguationRules 18

1.11 Plain text reader . 19
1.11.1 stringRangeMockID 19
1.11.2 acronymsAfter . 20
1.11.3 acronymsBefore . 20
1.11.4 ogonkifyFile . 20
1.11.5 ogonkifyStrategy . 21
1.11.6 ogonkifyMinLength . 21
1.11.7 ogonkifyMinLength . 21

1.12 Additional configuration . 21
1.13 Tagset syntax . 22

1.13.1 Attributes . 22
1.13.2 Parts of speech . 23

2 Input and output formats 24
2.1 Input only . 24

2.1.1 Plain text . 24
2.2 Input-output formats . 24

2.2.1 xcesAna . 24
2.2.2 TEI . 28

3 Spejd grammar 35
3.1 Terminology . 35
3.2 Variable definitions . 36
3.3 Macro definitions . 36
3.4 Rules . 37

3.4.1 Specification units . 38
3.4.2 Entity specifications 39

3.5 Operations overview . 40
3.5.1 Common parts . 40

2

3.5.2 agree . 41
3.5.3 orthnot . 41
3.5.4 assign . 42
3.5.5 unify . 42
3.5.6 persistent unify . 42
3.5.7 add . 43
3.5.8 set . 43
3.5.9 delete . 43
3.5.10 leave . 44
3.5.11 word . 44
3.5.12 alter . 45
3.5.13 group . 45
3.5.14 join . 46
3.5.15 attach . 46

3

Chapter 1

Configuration

The main file of Spejd’s configuration is called usually ”config.ini”. By
default Spejd looks for this file in the current directory on execution. This
default can be overridden by specifying -c <path to config file> option.

The configuration file consists of several options. Some of them are
required, but most of those have reasonable default values. Below goes a
list of standard options with explanations grouped by their functions.

Note 1. If a single option is specified multiple times in the file, the last
occurrence is used.

Note 2. The configuration file allows comments. They start with # and last
til the end of the line. Empty lines are ignored.

Note 3. In general, the configuration file should be encoded in ASCII. The
exception is encoding of values of options. Any file names should be encoded
in the filesystem’s encoding (they are not converted). The text-releated op-
tions (acronymsAfter, acronymsBefore) should have the same encoding as
set in inputEncoding.

1.1 Options types and default values

Allowed values for Boolean options are yes/true/on/1 and no/false/off/0.
The default values, unless specified, are:

• for Boolean options - no

• for numeric options - 0

• for string options - empty string

4

1.2 Files locations

All options in this group can contain a path, either relative (to the location
of configuration file) or absolute (in Unixes starting from /, in Windows
starting from <letter>:\ or \).

1.2.1 tagset

The tagset option specified a file containing a tagset definition for pro-
cessing. All the input data and the grammar must be consistent with this
definition. This option must be present for any kind of execution of Spejd.
The default is empty (so it will fail on every nonempty input data). For
description of a syntax of this file see section 1.13.

example

tagset = sample-morfeusz.cfg

1.2.2 rules

The rules option specifies a file containing a grammar to be used by Spejd.
It is needed only if the spejd tool is present in processing chain (the pro-
cessing chain is explained in section 1.3.1). For description of a syntax of
this file see chapter 3.

example

rules = rules.sr

1.3 Processing

1.3.1 processingChain

In the Spejd multiple tools can be executed between reader and writer mod-
ules. They form a processing chain, that is an output of a previous tool
becomes an input of a next tool. The processingChain option lists names
of subsequent tool that form the chain. Since the reader and writer are
always used, they are not contained in the list. The names are separated by
space. For standard Spejd distribution allowed values are:

• spejd

• pantera (not available in binary distribution of Spejd)

• dictionary:<dictionary_name>

5

The special notation for dictionary tool allows to apply multiple dictio-
naries in different places of processing chain. Each <dictionary_name>
suffix has to be unique in chain.

The default value of processingChain option is spejd. For details on
the tools configuration see sections: 1.9 (spejd), 1.8 (pantera), 1.7 (dictio-
nary).

example

processingChain = dictionary:example_dict spejd
processingChain = pantera spejd

with an empty chain can Spejd act as a format converter
processingChain =

1.3.2 maxThreads

Most of the tools in Spejd can work in multiple threads on multiprocessor
machines. The maxThreads option specifies how many threads (at most)
can be used. The default is 0, which causes the Spejd to detect the number
of available processors/cores and use that many threads.

example

maxThreads = 4

Note 4. Spejd doesn’t split a single input file between threads, so there have
to be multiple input files to get actual multithreading.

1.4 Input data

1.4.1 inputType

The standard Spejd can read three input file formats:

• plain text

• XCES (as used in IPI PAN Corpus)

• TEI P5 (as used in NKJP - National Corpus of Polish)

The option inputType allows to specify the input type. Allowed values
are txt, xcesAna, tei and auto, respectively for plain text, XCES, TEI P5
and an auto select mode. In the auto select mode the file type is detected
basing on the file name/extension:

• plain text for *.txt/*.txt.gz

6

• XCES for morph.xml/morph.xml.gz

• TEI without using moprhosyntax information for ann segmentation.xml
/ ann segmentation.xml.gz

• TEI using morphosyntax for ann morphosyntax.xml / ann morphosyntax.xml.gz

The plain text reader and TEI reader without morphosyntax use Mor-
feusz morphological analyzer (consult section 1.10). When inputType is
tei the expected input variant (segmentation/morphosyntax) is still deter-
mined by the file name. If the name contains ”segmentation” string, the
in ann segmentation variant is used, for all other names the morphosyntax
variant is used.

The default value for inputType is auto.

example

inputType = xcesAna

1.4.2 inputEncoding

The inputEncoding option defines the encoding of input files. It has to be
set - Spejd doesn’t use the XML coding tags.

The default value is UTF-8. Values acceptable are encoding names used
by iconv, they can be listed by iconv -l command under Unixes. Us-
ing non ASCII-compatible encodings such as UTF-16 may be problematic,
since this option affects some parts of the configuration file (the values of
acronymsAfter and acronymsBefore options) as well as the Spejd grammar
file.

example

inputEncoding = ISO8859-2

Note 5. The complete list of strings/files decoded using this setting:

• configuration file: values of acronymsAfter and acronymsBefore op-
tions

• ogonkifier definition file

• dictionary files

• morfeusz disambiguation rules file

• quotes and non-keyword strings in grammar file

7

1.4.3 inputFiles

The Spejd command line can contain paths to single input files or to direc-
tories. In the first case the specified files are simply processed. However
if a directory is specified, Spejd searches it recursively for input files. The
option inputFiles describes names of files to be processed. It has to be a
regular expression.

The default value of inputFiles is an empty string. Hence, by default
Spejd will process only files given explicitly in command line.

example

inputFiles = morph\.xml(\.gz)?|.*\.txt(\.gz)?|ann_morphosyntax\.xml(\.gz)?

1.4.4 ignoreDisamb

The Boolean ignoreDisamb option controls if Spejd has to use or ignore any
disambiguation annotation found in input.

example

ignoreDisamb = no

1.5 Output

1.5.1 outputType

The standard Spejd can write two output file formats:

• XCES (as used in IPI PAN Corpus)

• TEI P5 (as used in NKJP - National Corpus of Polish)

The outputType option specifies which writer is to be used. It can be
xcesAna or tei (for XCES and TEI P5 respectively) or null (a writer that
actually does not write anything, it exists here for testing purposes).

The default is xcesAna.

example

outputType = xcesAna

1.5.2 discardDeleted

Spejd can either write deleted (’incorrect’) interpretations to the output file
or omit them (and write only those, which are decided to be ’correct’). The
discardDeleted Boolean option controls that aspect of writer.

The default is not to discard.

8

example

discardDeleted = no

1.5.3 backupExistingFiles

When Spejd finds that the output file already exists, it can overwrite it or
make a backup of the old file. This Boolean option controls if to rename old
files to a ¡name¿.bak or simply overwrite them.

The default is to backup (yes).

example

backupExistingFiles = no

Note 6. Spejd will not overwrite any file until the processing ends success-
fully. Instead a temporary file is created for the time of processing. Hence,
Spejd can safely ”overwrite” the files it is reading from.

1.5.4 compressOutput

The compressOutput Boolean option controls whether the output has to be
compressed using ’gzip’ compression.

The default is no.

example

compressOutput = yes

1.5.5 compactTeiOutput

By the default, TEI writer produces files in format similar to National Cor-
pus of Polish format, that is it writes empty sentences and paragraphs and
places every xml tag in separate line. This Boolean option allows to produce
more simple and more human readable output without empty sentences.

The default is no.

example

compactTeiOutput = yes

When turned off, an example fragment of morphosyntax file may look
like:

example

<f name="orth">
<string>uzależnione</string>

9

</f>
<f name="msd">
<symbol value="pl:nom:m2" xml:id="morph_1.1.8.1.1-msd"/>
</f>

After turning it on, the above fragments look like this:

example

<f name="orth"><string>uzależnione</string></f>
<f name="msd"><symbol value="pl:nom:m2" xml:id="morph_1.1.8.1.1-msd"/></f>

1.5.6 teiSingleSyntokInterp

Spejd allows segments and syntactic words to be partially disambiguated.
That means they can have more than one interpretation marked as ”correct”.
In NKJP (National Corpus of Polish) format, it is illegal to have multiple
”correct” interpretations for one token. This option allows to get full com-
patibility of TEI writer with National Corpus Of Polish, assuming, that
grammar does not produce words with multiple ”correct” interpretations.
It causes writer not to output nonstandard XML-tags <f name=’interps’>
and <fs type=’lex’> in *_words.xml files.

The default is no.

example

teiSingleSyntokInterp = yes

Note 7. It is a user task to make sure, that there will be no tokens with mul-
tiple ”correct” interpretations. If this option is set and a non-disambiguated
token is found Spejd will terminate with an error message.

1.5.7 teiFsGroupHeads

One more NKJP compatibility option for TEI writer. Causes the syntactic
and semantic heads information of groups to be written as <f name=’...’
inside the group’s feature structure (<fs>). When disabled, heads are
marked as type attribute of group’s elements.

The default is no.

example

teiFsGroupHeads = yes

When turned off, an example fragment of groups file may look like:

10

example

<seg xml:id="groups_1.1-s_3">
<fs type="group">
<f name="orth"><string>dwie decyzje</string></f>
<f name="type"><symbol value="NumGz"/></f>
</fs>
<ptr type="synh" target="ann_words.xml#words_1.1-s_8"/>
<ptr type="semh" target="ann_words.xml#words_1.1-s_9"/>
</seg>

After turning it on, the above fragment looks like this:

example

<seg xml:id="groups_1.1-s_3">
<fs type="group">
<f name="orth"><string>dwie decyzje</string></f>
<f name="type"><symbol value="NumGz"/></f>
<f name="synh" fVal="ann_words.xml#words_1.1-s_8"/>
<f name="semh" fVal="ann_words.xml#words_1.1-s_9"/>
</fs>
<ptr target="ann_words.xml#words_1.1-s_8"/>
<ptr target="ann_words.xml#words_1.1-s_9"/>
</seg>

1.5.8 teiBottomUpSyntacticStructures

Backward compatibility with Spejd 1.2. Sometimes it is easier to parse TEI
when all entities are defined before they are referenced. This option allows
to get such bottom-up order of entities (starting from leafs, ending with the
root).

The default is no.

example

teiBottomUpSyntacticStructures = yes

1.5.9 outputSuffix

This option defines a suffix to be added to the output file name. It has to
include the extension, but not the compression format suffix (if any).

The default is empty.

example

outputSuffix = Sh.xml

11

The example above will produce ”morphSh.xml” output file from ”morph.xml”
input (if the outputType is xcesAna) or ”morph morphosyntaxSh.xml”,
”morph wordsSh.xml”, ”morph namedSh.xml” and ”morph groupsSh.xml”
files for tei outputType (consult the next section for the ”morph” part of
name). If the compression is turned on, the names will look like ”morphSh.xml.gz”.

For xml input files overwriting with output files one can use ”.xml”.

1.5.10 outputFilenameCore

To modify a core of file name the outputFilenameCore can be used. It
causes Spejd to use a specified string instead of the input file name core
while constructing the output file name(s).

If this option is empty or is not present in configuration file, Spejd will
use the input file name core.

example

outputFilenameCore = ann
this is a conventional name core for files in National Corpus of Polish

Note 8. When using this option make sure there is no directory containing
more than one file matching the inputFiles filter in the input. Otherwise
the output files will be overwritten.

1.6 Diagnostics

1.6.1 reportInterval

This option controls the time interval between each progress report in sec-
onds. 0 value disables progress reports.

example

reportInterval = 5

1.6.2 debug

More detailed memory usage or efficiency debugging reports can be turned
on using Boolean debug option. Setting it to yes also causes that a more
detailed summary on Spejd finite-state machines usage is printed.

example

debug = no

12

1.6.3 ruleMarking

By default Spejd outputs rule titles in syntactic structures created by those
rules, but disambiguation doesn’t contain such information about rules. This
option causes an additional attribute ’rule’ containing rule title to appear
in the output in each interpretation marked by Spejd as incorrect/deleted.

example

ruleMarking = yes

Note 9. When ignoreDisamb is set to no, if an interpretation is marked as
incorrect already in the disambiguated input, Spejd will not write the ’rule’
attribute in the output for this interpretation. The ruleMarking affects only
interpretations deleted by some Spejd rules.

1.6.4 nonfatalTagErrors

By default, if some rule produce a tag not conforming the tagset, Spejd will
terminate and write message about details of the error. If the nonfatalTagErrors
is turned on, Spejd will not terminate on such errors. It will try to do its best
to output only tags conforming the tagset, but they may be useless. This op-
tion exists only to preserve compatibility with older versions of Spejd, which
accepted incorrect rules. Please do not use when developing new grammars.

Note 10. Use this option at your own risk and don’t report crashes when
using it

example

nonfatalTagErrors = no

1.6.5 muffleTagWarnings

If the nonfatalTagErrors is set, Spejd (probably) outputs large amount
of warnings about incorrect tags. The muffleTagWarnings Boolean option
disables printing them.

example

muffleTagWarnings = no

1.6.6 tagErrorsOnlyOnTheEnd

By default correctness checks of tags are performed on each tag modification.
This option allows to disable all the checks during processing and leaves only
one validation of tags before writing to the output file. Using this option is
not recommended for developing new grammars.

13

example

tagErrorsOnlyOnTheEnd = no

1.7 Dictionaries

For each dictionary tool in the processingChain there must be one option
specifying a list of files containing dictionary entries. The name of each of
those options is the same as in the processingChain:
dictionary:<dictionary_name>

example

if dictionary:example_dict was the entry in ’processingChain’, then
two files ’sample_dict’ and ’lexdictnum’ can be assigned to it as follows

dictionary:example_dict = sample_dict lexdictnum

1.7.1 Syntax of the dictionaries

Each dictionary entry has to be in separate line. The entries should be in
one of the following forms:

syntax

orthographic form,base (lexical) form:tag

syntax

,base (lexical) form:some_parts_of_tag;condition

In the first variant the orthographical form is used for matching words.
Tag definition is expanded (it can contain wildcards).

In the second variant orthographic form is omitted. In that case a base
form is used to match. The tags of existing interpretations which match
the base form are corrected/modified according to the specified tag. This
variant allows the tag to be not full/complete, but only specifying some of
the attributes (some parts). This variant also allows to specify conditions
on tag that must be meet to perform the modification. The condition has
form of a partial tag, just like in the ”tag” section of modifying variant.
A condition restricts modified interpretations to that ones which have all
values of the specified attributes among the specified values. If an attribute
is omitted in the specification it means that there are no restrictions on this
attribute value and it can be anything (including absence of value). When a

14

condition is empty (that means: there are no restrictions on any attribute),
a semicolon preceding it can be omitted and the format is:

syntax

,base (lexical) form:some_parts_of_tag

Both variants of entries (with and without orthographic form) can be
mixed. All entries with orthographic form are applied before applying any
of the entries without orth in the scope of a single dictionary:<name> tool,
no matter in which file in the file list they appear.

Here go some example dictionary entries

example

Korea Południowa,Korea Południowa:subst:sg:nom.voc:f
Korei Południowej,Korea Południowa:subst:sg:gen:f
Korei Południowej,Korea Południowa:subst:sg:dat:f
,ten:sen=17.8;nom.acc
,okrutny:sen=-13.1:rev;nom.acc
,gorzki:rev

The first three entries specify tags and bases for two-segment entry. Ap-
plication of any of them will produce a syntactic word. The next two entries
will match all interpretations of words with the bases ’ten’ and ’okrutny’
respectively which have case equal to ’nom’ or ’acc’. They will modify their
tags adding/setting numeric attribute ’sen’ with appropriate value and (for
the second entry) setting some other attribute to ’rev’ (e.g. the ’rev’ may
be a value of reversibility attribute). The last entry will match all interpre-
tations with the lexical form ’gorzki’ and set their reversibility to ’rev’.

Note 11. Wildcards in dictionaries are allowed, however in the modifying
entries there is only ’one.two.three’ format allowed (the ’ ’ is illegal).

Note 12. The dictionary files should have the same encoding as the input
files (which is set in the inputEncoding configuration option).

1.8 Pantera configuration

1.8.1 panteraDoOwnMorphAnalysis

The Pantera can use its own built-in tweaked version of Morfeusz. If this
option is set, all interpretations set by the reader or any tools preceding
pantera in the processingChain are dropped before performing the Pantera
analysis.

example

panteraDoOwnMorphAnalysis = yes

15

1.8.2 panteraTagsetName

This option specifies the tagset to be used by Pantera. Leave empty to use
Pantera’s default. This value directly sets the Pantera’s ’tagset’ option, for
details refer to the Pantera documentation.

example

panteraTagsetName = ipipan

Note 13. It is important to make sure the tagset definition specified by
’tagset’ option (section 1.2.1) is a superset of the tagset used by pantera.

1.8.3 panteraEnginePath

This option specifies the engine to be used by Pantera. Leave empty to use
Pantera’s default. This value directly sets the Pantera’s ’engine’ option, for
details refer to the Pantera documentation.

example

panteraEnginePath = my_engine.btengine

Note 14. Relative paths are interpreted as relative to the location of the
’config.ini’ file.

1.9 Spejd semantics and internals configuration

1.9.1 matchStrategy

This option sets the strategy for matching syntactic entities. It can be either
* for greedy, + for possessive or ? for reluctant. The default is *.

example

matchStrategy = *

1.9.2 nullAgreement

This Boolean option controls whether ’agree’ or ’unify’ operations should
return true if none of the agreed entities has the agreed attribute. In other
words if agree(case,1,2) should return true, if both entity 1 and 2 have no
case? Default is no.

example

nullAgreement = no

16

1.9.3 composeLimit

This integer option defines a number of single-rule automata to be composed
together. Usually there is no need to change the default value (it has been
chosen to obtain the maximal efficiency).

Note 15. Rule of thumb: if Spejd consumes much too much memory, it’s
better to decrease this number than to set the memoryLimit option to a low
value - it gives smaller impact on performance while significantly decreasing
the amount of memory used by Spejd.

example

composeLimit = 150

1.9.4 memoryLimit

This integer option defines a memory limit in megabytes. When memory
usage exceeds this limit a rarely-used states removal procedure is launched.
This option should be rather used as an emergency brake. For a significant
reduction of the memory usage consider changing the composeLimit option.

The default is 1000.

example

memoryLimit = 2000

Note 16. There is no guarantee that Spejd will not consume more memory
than specified by memoryLimit. The limit is treated as a hint when to start
to conserve memory. Actual usage may be higher by few percents (it depends
on memory allocator library buffers size).

Note 17. For 32-bit systems/binaries: values higher than approx. 1900 are
useless and may cause Spejd terminate when trying to allocate more memory
that is possible in 32-bit systems (2048 megabytes).

1.9.5 leavePercent

This integer option specifies approximate percent of FSM states to leave after
the states removal. For best effects use values between 50 and 90 depending
on diversity of the processed data and used memoryLimit (lower values work
better with high diversity of natural language in subsequent input files, high
value may cause the states removal procedure to start frequently wasting
lots of time).

Use values between 1 and 100.

example

leavePercent = 80

17

1.9.6 minComplexPercent

The definitive limit of normal state removal procedure usage. State removal
deletes only complex states, so if there are lots of plain states it can’t prevent
from exceeding memoryLimit. If the percent of complex states is less than
minComplexPercent of all states, all the DFAs are dropped and they are
built from the beginning just like if the spejd would be restarted. However
it does not recompile rules, so it’s faster.

example

minComplexPercent = 10

1.9.7 maxNumberOfValues

This integer option specifies a maximal number of unicode characters which
can appear in rules compiled to internal regex. It must be higher than the
highest number of values of a single attribute (including numeric attributes)
and must be higher than a number of unique characters appearing in all
rules. Setting it to high values can increase the memory usage.

Default is 4000.

example

maxNumberOfValues = 4000

1.10 Morfeusz (morphological analyzer) configu-
ration

1.10.1 disableMorfeusz

Use this option to disable Morfeusz completely. It can be useful when some
tool in the processingChain (e.g. pantera) replaces interpretations produced
by the reader.

example

disableMorfeusz = no

1.10.2 morfeuszSegmentationDisambiguationRules

Morfeusz produces ambiguous segmentation, which is not allowed in Spejd.
It can be resolved by a simple rule-based disambiguator. This option spec-
ifies a file to load rules from. The default (empty value) causes to use few
built-in rules for Polish.

18

example

morfeuszSegmentationDisambiguationRules = segm_disamb.conf

The format of file is as follows:

• each rule is in a separate line

• each rule consists of 2 words separated by space(s)

• the first word is a regexp pattern matching the orthographic form of
the word

• the second word is a keyword (one of separate and together)

• comments start from # character and terminate with newline

• empty lines are allowed

The default rules are:

example

baliście separate
czekał.m separate
kulturalno-oświatowy.* separate
miałem separate
piekłem separate
podziałom together
winnym together
wyłom together
.*łem together
.*ś together

Note 18. Encoding of this file must be as set in the inputEncoding option.

1.11 Plain text reader

1.11.1 stringRangeMockID

The plain text reader marks position in the input text of each word in a
string-range notation. It requires a 3-rd attribute which identifies an element
in which the position is calculated. This option sets a mock identifier for
this purpose.

example

stringRangeMockID = p-1

19

1.11.2 acronymsAfter

This option specifies a list of acronyms. If a dot is found after one of them,
the sentencer doesn’t consider it as a sentence break. The list is separated
by |.

example

acronymsAfter = prof|dr|mgr|doc|ul|np|godz|gen|płk|mjr|por|tzw|tzn|proc|nt|art|ust|ww|www|ws|dz

1.11.3 acronymsBefore

This option specifies a list of another kind of acronyms (usually top level
domain names). If a dot is found before one of them, the sentencer doesn’t
consider it as a sentence break. The list is separated by |.

example

acronymsBefore = ac|ad|ae|aero|af|ag|ai|al|am|an|ao|aq|ar|arpa|as|asia|at|au|aw|ax|az

1.11.4 ogonkifyFile

This option sets a name of a file containing ogonkify (diacritic completion)
substitutions.

example

ogonkifyFile = ogonkifier.ini

The format of the file is:

syntax

<letter without diacritics>=<list of possible letters with diacritics separated by ’|’>

example

s=ś
z=ź|ż

Note 19. This option is required when using plain text reader unless the
ogonkifier is disabled by ogonkifyStrategy option.

20

1.11.5 ogonkifyStrategy

This option controls when the ogonkifier is used. It can have one of the
values:

• A - use always

• N - never (disables ogonkification)

• M - only when the morphological analyzer fails to analyse a word

example

ogonkifyStrategy = M

1.11.6 ogonkifyMinLength

This option specifies minimal length of a word to be processed by ogonkifier.

example

ogonkifyMinLength = 3

1.11.7 ogonkifyMinLength

This option specifies maximal length of a word to be processed by ogonkifier.

example

ogonkifyMaxLength = 13

Note 20. The ogonkifier produces every possible combination of diacritic
completed and not completed characters that appear in word. The number
of them can be exponential on the word length.

1.12 Additional configuration

Spejd is designed in the way that additional extensions/tools can be written
easily. They can use some additional configuration options which should ap-
pear in the configuration file. If you are using such a nonstandard extensions
consult their documentation for details.

21

1.13 Tagset syntax

As in the configuration file, in the tagset file comments are allowed. They
start with # and last til the end of the line. Empty lines are ignored. The
encoding of this file must be ASCII (this doesn’t apply to comments as long
as they are well formed).

The tagset definition file should consist of two sections: ATTR and POS,
in this order.

Note 21. Names and values of attributes and parts of speech must be single
words containing letters and underscores. They are case-sensitive, they must
not be single capital letter and must not be equal to any of the rules syntax
keywords.

Note 22. Number of values of a single attribute (including numeric at-
tributes) must not exceed maxNumberOfValues defined in configuration.

1.13.1 Attributes

First section of the tagset definition file is [ATTR]. It lists attributes and
their values. For enumerable attributes the syntax is:

syntax

name_of_attribute = first_value second_value third_value ...

The numeric attributes are defined using the following syntax

syntax

attrname = <lower_bound, upper_bound> number_of_partitions

lower_bound and upper_bound are floating point numbers and optional
number_of_partitions is an integer. All the numeric values of the at-
tribute will be stored rounded to a multiple of precision = (upper bound−
lower bound)/(number of partitions−1). That means they will have form
of lower bound+ n ∗ precision with n ∈ [0, number of partitions)

The default value of number_of_partitions is round(upper bound −
lower bound) + 1, so if both bounds are integers the precision equals to 1.

The number_of_partitions must not be lower than 2 and should not
exceed maxNumberOfValues defined in configuration. Setting it to high val-
ues can cause performance reduction and higher memory usage.

example

the section header
[ATTR]

22

here goes the list of attributes with values
some enumerable attributes
number = sg pl
case = nom gen dat acc inst loc voc
gender = m1 m2 m3 f n n1 n2 n3 p1 p2 p3
person = pri sec ter
degree = pos com sup
aspect = imperf perf
negation = aff neg

and some numeric attributes
sen = <-20,20> 401
percent_attribute = <0,100>
the last one has steps of size 1, so it has 101 values

1.13.2 Parts of speech

The second section consists of part of speech definitions with lists of possible
attributes. Optional attributes are marked with square brackets.

example

the section header
[POS]

here go the part-of-speech definitions
conj =
interp =
adv = [degree] [sen]
imps = aspect [negation] [sen]
subst = number case gender [sen]
ger = number case gender aspect negation

Note 23. Number of POS-es should not exceed ’maxNumberOfValues’ de-
fined in configuration.

23

Chapter 2

Input and output formats

IO formats used by Spejd are not well defined elsewhere, so it is worth to
describe them in details. Example files of all variants of formats discussed in
this chapter are attached to the Spejd package, in the examples/format_examples.tar.gz
archive.

2.1 Input only

2.1.1 Plain text

The simplest input format is plain text. It has to be have correct encoding
(according to settings in configuration file). The whole text file is consid-
ered to be a single paragraph, multiple blank characters (new lines, spaces)
are treated as a single white space. The text is processed by a simple sen-
tencer and tokenizer, so please remember to configure acronymsBefore and
acronymsAfter configuration options to get what you expect. By default,
tokenized text is then processed by the built-in morphological analyzer (Mor-
feusz). See section 1.10 for analyzer configuration, especially if you want to
disable it.

2.2 Input-output formats

2.2.1 xcesAna

The ”xcesAna” supported by Spejd is similar to the format used by old ver-
sions of Spejd (0.8x). It is similar to a modification of the original ”Corpus
Encoding Standard Encoding conventions for annotated data” for the IPI
PAN Corpus 1 with some minor changes. Additionally Spejd supports a
syntactic entities notation (group, syntok tokens). The ”xcesAna” format

1dtd for the format is available at http://korpus.pl in a download section, along with
the ”Frequency dictionary of contemporary Polish”

24

is (so far) the only format which is lossless for the information that Spejd
uses and produces. That means, the output of Spejd in this format can be
read again without loss of information produced by a previous processing.

Below there is a structure of the ”xcesAna” format explained in details
with tiny examples.

header

example

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cesAna SYSTEM "xcesAnaIPI.dtd">

The above header has to be in the exactly this form. The version and
encoding attributes of <?xml .. ?> token are ignored, the encoding is set
through configuration file.

base file structure

example

<cesAna xmlns:xlink="http://www.w3.org/1999/xlink" type="pre_morph" version="IPI-1.2">
<chunkList xml:base="text.xml">
<!-- chunks follows here -->
</chunkList>
</cesAna>

The whole file consists of a cesAna token containing exactly one chunkList.
There can be any kind of attributes in that tokens, all are ignored while read-
ing, but they are saved and written in the output in corresponding tokens
(if only the output format is xcesAna too).

chunks, text structure

example

<chunk type="caption" xlink:href="#caption1">
<chunk type="s">
<!-- list of entities follows>
</chunk>
</chunk>
<chunk type="p">
<chunk type="s">
<!-- list of entities follows>
</chunk>
<chunk type="s">
<!-- list of entities follows>
</chunk>
</chunk>

25

Chunks build the file structure. Spejd operates at the level of sentences,
so the list of chunks must at least reflect the sentences structure in the
text. However chunks can be nested, so there is a possibility to render more
complicated structure and meta information as paragraphs, titles, headers,
footnotes. Spejd distinguishes sentence-chunks from other chunks by using
type xml attribute, which must be equal to "s" in the case of sentence. If
there is no chunk of type "s", the most nested chunk is treated as sentence.
The sentence chunk contains list of entities and must not contain any nested
chunks; if the chunk contains a nested chunk, it must neither contain any
entities nor have a type s. A correctly built chunks structure is copied to
the output with all their token attributes if the output is xcesAna. In the
”no type-s chunk” case, an additional chunks level is added to the output
marking the sentences with the ”type="s"”.

entities

An example of annotated text without syntactic structures:

example

<tok>
<orth>Niepozorne</orth>
<lex><base>niepozorny</base><ctag>adj:pl:nom:m2:pos</ctag></lex>
<lex disamb="1"><base>niepozorny</base><ctag>adj:pl:nom:m3:pos</ctag></lex>
<lex><base>niepozorny</base><ctag>adj:pl:acc:n:pos</ctag></lex>
</tok>
<tok>
<orth>skarby</orth>
<lex disamb="1"><base>skarb</base><ctag>subst:pl:nom:m3</ctag></lex>
<lex><base>skarb</base><ctag>subst:pl:acc:m3</ctag></lex>
</tok>
<ns/>
<tok>
<orth>.</orth>
<lex disamb="1"><base>.</base><ctag>interp</ctag></lex>
</tok>
<ns/>
<tok>
<orth>.</orth>
<lex disamb="1"><base>.</base><ctag>interp</ctag></lex>
</tok>
<ns/>
<tok>
<orth>.</orth>
<lex disamb="1"><base>.</base><ctag>interp</ctag></lex>
</tok>

The same with syntactic structures:

26

example

<group id="a3" rule="(1) NG between verbs/groups/aby/etc." type="NG" synh="a2" semh="a2">
<tok id="a1">
<orth>Niepozorne</orth>
<lex disamb_sh="0"><base>niepozorny</base><ctag>adj:pl:nom:m2:pos</ctag></lex>
<lex disamb="1"><base>niepozorny</base><ctag>adj:pl:nom:m3:pos</ctag></lex>
<lex disamb_sh="0"><base>niepozorny</base><ctag>adj:pl:nom:f:pos</ctag></lex>
</tok>
<tok id="a2">
<orth>skarby</orth>
<lex disamb="1"><base>skarb</base><ctag>subst:pl:nom:m3</ctag></lex>
<lex disamb_sh="0"><base>skarb</base><ctag>subst:pl:acc:m3</ctag></lex>
</tok>
</group>
<ns/>
<syntok id="a11" rule="...">
<orth>...</orth>
<lex><base>...</base><ctag>interp</ctag></lex>
<tok id="ab">
<orth>.</orth>
<lex disamb="1"><base>.</base><ctag>interp</ctag></lex>
</tok>
<ns/>
<tok id="ad">
<orth>.</orth>
<lex disamb="1"><base>.</base><ctag>interp</ctag></lex>
</tok>
<ns/>
<tok id="af">
<orth>.</orth>
<lex disamb="1"><base>.</base><ctag>interp</ctag></lex>
</tok>
</syntok>

An entity can be one of four types:

• segment - a single string of characters with morphological information
attached (a single word). It is represented by <tok> xml token. There
are no required attributes this token. It must have an <orth> subtoken
and may have one or more <lex> subtokens (interpretations).

• a no-space - token marking that there is no whitespace between subse-
quent segments. Represented by <ns/> xml token. The no-space has
no required attributes and must not contain subelements. All existing
attributes are ignored.

• a syntactic word - a sequence of segments, nested syntactic words
and no-spaces with its morphological information. Represented by

27

<syntok> xml token. There are no required attributes of this token.
In the output of Spejd, there can be a rule attribute with a name of
a rule which has built this synthetic word. Like segment, a syntactic
word must have an <orth> subtoken and may have one or more <lex>
subtokens. Additionally it must have one or more <tok>, <syntok> or
<ns/> subtokens.

• a syntactic group - a sequence of segments, no-spaces, syntactic words
and groups with specific type information and a chosen head entities.
Represented by <group> token. The <group> token must have a type,
synh and semh attributes and optionally may have a base attribute.
The synh and semh attributes contain identifiers of, respectively, syn-
tactic and semantic head. It is required, that the entities representing
those heads have id xml attributes with the same identifiers. In the
output of Spejd, there can be a rule attribute with a name of a rule
which has built this synthetic group. A group must have one or more
subentities (of any of the four types).

In the output of the Spejd all segments, syntactic words and groups have
id attributes with their own, unique values (in the scope of the file).

In the list above, the <orth> xml token represents orthographic form of
the entity. It may not have any attributes and should be a text-only token
(with no subtokens, only plain text).

The <lex> token may have a disamb attribute with a value 1. That
means the interpretation represented by this token is a chosen one (hav-
ing ”golden tag”). In the output, the negative choices made by Spejd are
marked with disamb_sh attribute with a value 0 (those interpretations are
”deleted” by Spejd grammar). Additionally, depending on configuration,
”deleted” interpretation may have a rule attribute which contains a name
of a rule which has deleted the interpretation. Any other attributes are
ignored and copied to the output (as long as the output is xcesAna). The
<lex> should have exactly two text-only subtokens: <base> and <ctag>, the
first containing a base (lexical) form of word(s) and the second containing a
positional tag, with POS and other attribute values separated by colon.

2.2.2 TEI

The TEI format supported by Spejd is a TEI P5 encoding similar to the
encoding used in National Corpus of Polish (NKJP) 2. The format uses mul-
tiple files to encode various layers of annotation. Spejd can read segmenta-
tion (optionally referring to a text layer) and morphosyntactic annotation
layers and is able to write segmentation, morphosyntactic, syntactic words
and syntactic groups layers. The format of files written by Spejd may vary

2Schemes for this format can be found at http://nlp.ipipan.waw.pl/TEI4NKJP/

28

slightly depending on few switches set in configuration listed at the end of
this section. In particular it can be fully compatible with NKJP (as of May
2012).

The segmentation and morphosyntactic layers are parsed by dedicated
parsers, so their formats are hardly flexible. The text layer is read using
xml library, thus reading is not so efficient as reading other layers but it is
highly flexible. Spejd doesn’t support reading multiple layers at the same
type (except for text layer referenced from segmentation). Hence, the TEI
format is not lossless for Spejd, it cannot read syntactic structures from its
output. For deciding which layer (segmentation or morphosyntax) is read
when both are available see section 1.4.1.

text layer

This level is not read or written by Spejd directly. It is used when the
segmentation layer doesn’t contain orthographical forms and only refers to
particular parts of text. There are no restrictions on the format of this layer
except it has to be either a plain text file with the name ending with .txt
or a valid xml.

base structure of the remaining layers files

example

<?xml version="1.0" encoding="UTF-8"?>
<teiCorpus xmlns:xi="http://www.w3.org/2001/XInclude"
xmlns="http://www.tei-c.org/ns/1.0" xmlns:nkjp="http://www.nkjp.pl/ns/1.0">

<xi:include href="NKJP_1M_header.xml"/>
<TEI>
<xi:include href="header.xml"/>
<text>
<body>
<p> <!-- paragraph -->
<s> <!-- sentence -->
<!-- contents (segments, syntactic structures) go here -->
</s>
<s> <!-- another sentence -->
<!-- contents (segments, syntactic structures) go here -->
</s>
</p>
</body>
</text>
</TEI>
</teiCorpus>

The segmentation, morphosyntactic, syntactic words and groups layers
use the same structure in their files.

29

The only optional tokens in the example above are the <xi:include
ones. They are ignored by Spejd, but saved and written to the output (as
long the output is TEI). Replacing them by contents of the referred files
is not supported. That are the only places where <xi:include tags may
be present. The encoding set in the <?xml token is ignored, user should
set the correct encoding in the Spejd’s configuration file. All attributes of
<teiCirpus>, <TEI>, <text> and <body> are ignored but saved and writ-
ten to the output. Inside the <body> token should be a list of <p> tokens
(paragraphs). It may be empty. Each paragraph consist of a list of sen-
tences (<s> tokens). Possible contents of <s> differ between layers and are
described below.

segmentation layer

example

<!-- 1st version, with orth forms in a separate file -->
<choice>
<nkjp:paren>
<!-- Gdzie -->
<seg corresp="text.xml#string-range(p1,0,5)" nkjp:rejected="true"

xml:id="segm_seg1"/>
<!-- ś -->
<seg corresp="text.xml#string-range(p1,5,1)" nkjp:nps="true"

nkjp:rejected="true" xml:id="segm_seg2"/>
</nkjp:paren>
<nkjp:paren>
<!-- Gdzieś -->
<seg corresp="text.xml#string-range(p1,0,6)" xml:id="segm_seg3"/>
</nkjp:paren>
</choice>
<!-- tam -->
<seg corresp="text.xml#string-range(p1,7,3)" xml:id="segm_seg4"/>
<!-- ? -->
<seg corresp="text.xml#string-range(p1,11,1)" nkjp:nps="true"

xml:id="segm_seg5"/>

example

<!-- 2nd version, with explicitely given orth forms -->
<seg xml:id="segm_seg6">Tak</seg>
<seg xml:id="segm_seg7">.</seg>

Segmentation layer consists of <seg> (segment) tokens. They are ex-
pected to form a list (subsequent tokens in a sentence) with exceptions
for fragments with ambiguous segmentation. Those fragments are closed
in <choice>...</choice> token and may be grouped using <nkjp:paren>
tokens. The <nkjp:paren> parentheses should not be nested.

30

Every segment has to point to the text file to its orthographic form using
corresp attribute and string-range function (it has 3 arguments, id of xml
text-token, starting position counting from 0 and length of the substring;
the id is ignored when referring to a plain text file). Alternatively, the
orthographic form may be included directly as contents of the <seg> token
as in the ”2nd version” in the example above. Output segmentation files
produced by Spejd (created only when the input is plain text) use the first
version, referring to the input text file.

Segments may optionally have nkjp:nps attribute set to true (there is
no white-space before segment), and xml:id identifier unique in the scope
of file. Ambiguities <choice> should be resolved, the notation for marking
rejected variants is nkjp:rejected attribute present in every segment in
that variant.

morphosyntax layer

example

<seg corresp="ann_segmentation.xml#segm_1.8-seg" xml:id="morph_1.1.8-seg">
<fs type="morph">
<f name="orth"><string>uzależnione</string></f>
<f name="interps">
<fs type="lex" xml:id="morph_1.1.8.1-lex">
<f name="base"><string>uzależniony</string></f>
<f name="ctag"><symbol value="depr"/></f>
<f name="msd"><symbol value="pl:nom:m2" xml:id="morph_1.1.8.1.1-msd"/></f>
</fs>
<fs type="lex" xml:id="morph_1.1.8.2-lex">
<f name="base"><string>uzależnić</string></f>
<f name="ctag"><symbol value="ppas"/></f>
<f name="msd">
<vAlt>
<symbol value="sg:nom:n:perf:aff" xml:id="morph_1.1.8.2.1-msd"/>
<symbol value="pl:acc:n:perf:aff" xml:id="morph_1.1.8.2.2-msd"/>
<symbol value="pl:nom:f:perf:aff" xml:id="morph_1.1.8.2.3-msd"/>
</vAlt>
</f>
</fs>
</f>
<f name="disamb">
<fs type="tool_report">
<f fVal="#morph_1.1.8.1.1-msd" name="choice"/>
</fs>
<fs type="tool_report">
<f fVal="#morph_1.1.8.2.1-msd" name="choice"/>
<f name="interpretation"><string>uzależnić:ppas:pl:nom:n:perf:aff</string></f>
</fs>
<fs type="tool_report">
<f fVal="#morph_1.1.8.2.3-msd" name="choice"/>

31

</fs>
</f>
</fs>
</seg>

The morphosyntax layer consists of a list of segments. The example
above shows typical contents of a single <seg> token (segment) in the mor-
phosyntax file. The <fs type="morph" token with <f name="orth"> and
<f name="interps"> subtokens are required. Lex entries list (<fs type="lex">
tags inside the <f name="interps">) may be empty. Each lex entry has to
have nonempty base form, a ctag (part of speech) and at least one mor-
phosyntactic description msd. Multiple msds are possible within one lex
entry and should be closed in <vAlt> token. Each msd with corresponding
base and ctag form an interpretation (in Spejd nomenclature). The format
of interpretations is exactly like in example. The required xml attributes
are: value attributes of <symbol> tokens, name of <f> tokens and xml:id
of <symbol> encoding values of msds. xml:id of other tags are optional. All
other attributes are ignored by Spejd, but preserved in the output (if the
output format is tei).

The last feature <f name="disamb"> (disambiguation) is optional. It
must contain at least one <fs type="tool_report"> token and a <f name="choice">
token pointing to a chosen interpretation/msd. The <f name="interpretation">
is optional and not used by Spejd, but is supported and written in the output
according to results of Spejd processing.

The binary format of this layer in the output may be changed using
compactTeiOutput option (see 1.5.5). Turning it off causes subtokens of the
inner <f>s to be written in a separate line each.

syntactic words layer

example

<!-- a single segment, directly corresponding with morphosyntax layer -->
<seg xml:id="words_1.1.8-seg">
<fs type="words">
<f name="orth"><string>uzależnione</string></f>
<f name="interps">
<fs type="lex">
<f name="base"><string>uzależniony</string></f>
<f name="ctag"><symbol value="depr"/></f>
<f name="msd"><symbol value="pl:nom:m2"/></f>
</fs>
<fs type="lex">
<f name="base"><string>uzależnić</string></f>
<f name="ctag"><symbol value="ppas"/></f>
<f name="msd">

32

<vAlt>
<symbol value="pl:nom:f:perf:aff"/>
<symbol value="pl:nom:n:perf:aff"/>
</vAlt>
</f>
</fs>
</f>
</fs>
<ptr target="ann_morphosyntax.xml#morph_1.1.8-seg"/>
</seg>

example

<!-- a true syntactic word -->
<seg xml:id="words_2.4-s_86"><!-- rule="negacja dla czasowników, imiesłowów" -->
<fs type="words">
<f name="orth"><string>nie ma</string></f>
<f name="interps">
<fs type="lex">
<f name="base"><string>mieć</string></f>
<f name="ctag"><symbol value="Verbfin"/></f>
<f name="msd"><symbol value="sg:ter:pres:ind:imperf:nrefl:neg"/></f>
</fs>
</f>
</fs>
<ptr target="ann_morphosyntax.xml#morph_2.4.4-seg"/>
<ptr target="#words_2.4-s_87"/>
</seg>

The syntactic words layer contains segments and syntactic words. For
every segment in morphosyntactic layer there is a separate <seg> token.
Additionally, every syntactic word is represented with its own <seg>. Each
<seg> contain a <fs type="words"> defining the orthographical form and
interpretations. The format of interpretations is the same as in the mor-
phosyntax layer, however there is no need for xml:id attributes in msds
since this layer contains only interpretations considered to be correct. After
<fs type="words"> there go a list of <ptr> tokens pointing to the contents
of syntactic word: to the corresponding segments in morphosyntax layer or
to the nested syntactic words.

It is possible to change the contents of <fs type="words"> using teiSin-
gleSyntokInterp option. It causes <f name="interps"> and <fs type="lex">
tokens to be omitted and the base, ctag and msd <f>s to be written directly
inside <fs type="words">. This option exists for compatibility reasons, see
1.5.6 for details.

The default behavior is to write the nested syntactic words in top-down
order, starting with the root and ending on leafs. This can be changed using
teiBottomUpSyntacticStructures option, see 1.5.8 for details.

33

The binary format of this layer in the output may be changed using
compactTeiOutput option (see 1.5.5). Turning it off causes subtokens of the
inner <f>s to be written in a separate line each.

syntactic groups layer

example

<seg xml:id="groups_1.2-s_10"><!-- rule="PrepNG: Prep + NG" -->
<fs type="group">
<f name="orth"><string>dla Jana Kowalskiego</string></f>
<f name="type"><symbol value="PrepNG"/></f>
</fs>
<ptr type="synh" target="ann_words.xml#words_1.2-s_33"/>
<ptr type="semh" target="#groups_1.2-s_11"/>
</seg>
<seg xml:id="groups_1.2-s_11"><!-- rule="NG: name + surname" -->
<fs type="group">
<f name="orth"><string>Jana Kowalskiego</string></f>
<f name="base"><string>Kowalski, Jan</string></f>
<f name="type"><symbol value="NG"/></f>
</fs>
<ptr type="head" target="ann_words.xml#words_1.2-s_34"/>
<ptr type="nonhead" target="ann_words.xml#words_1.2-s_35"/>
</seg>

The syntactic groups layer consists of (only) syntactic groups - it doesn’t
refer anyhow to segments or words not closed in a syntactic group. Each
<seg>, standing for a single group, must contain a feature set <fs type="group">
describing the group and a list of pointers to its contents. The description
consists of an orthographical form and a type, which is an arbitrary identifier
provided by a grammar developer. It can also contain an optional feature
base. Pointers to contents of the group have a type attribute with one of
values: nonhead, head, semh or synh, meaning respectively, that this entity
isn’t a head of any type, is both semantic and syntactic head, is a semantic
head only or is a syntactic head of the group only.

The notation of marking of heads by attributes of pointers can be changed
to be included in the <fs type"group"> token. See 1.5.7 for details.

The default behavior is to write the nested syntactic groups in top-down
order, starting with the root and ending on leafs. This can be changed using
teiBottomUpSyntacticStructures option, see 1.5.8 for details.

The binary format of this layer in the output may be changed using
compactTeiOutput option (see 1.5.5). Turning it off causes subtokens of the
inner <f>s to be written in a separate line each.

34

Chapter 3

Spejd grammar

The Spejd grammar consists of a single file. It has three main parts: variable
definitions, macro definitions and rules, exactly in this order. The variable
and macro definitions are optional.

In the whole file comments begin with # character and end with a new-
line character. Any whitespaces in the file are ignored (unless they are in
quotes). Only ASCII double quotes (") make quoted strings. The double
quote character can appear in the quoted string, but must be backslash-
escaped (\"). A backslash must also be escaped (\\). Any other characters
in quotes are interpreted as they are.

Note 24. The grammar file should be in an ASCII-compatible encoding.
All keywords and braces/operators must be the same as in ASCII. Quotes
contents (requirements on orth and base attributes) should be in the encoding
set by the inputEncoding configuration option.

3.1 Terminology

In this chapter each occurrence of segment, token, syntactic word, syntactic
group and syntactic entity should be understood as follows:

• segment - a smallest interpreted unit, a sequence of characters together
with its morphosyntactic interpretations (lemma, grammatical class,
grammatical categories). In many cases it is a single word.

• syntactic word - a non-empty sequence of segments and/or syntactic
words, e.g. named entity. It also has morphosyntactic interpretations.

• token - a segment or a syntactic word.

• syntactic group - a non-empty sequence of tokens and/or syntactic
groups. It is identified by a syntactic head and a semantic head, which
both are tokens. It has a type identifier.

35

• syntactic entity - a token or a syntactic group.

3.2 Variable definitions

In the top of the grammar file variables may be declared and defined. Decla-
rations are constructed with one of the keywords: Variable or ReportedVariable,
followed by variable name. After the name there can be a default value def-
inition: an equality sign and a constant expression, in most cases a floating
point number (see numeric expressions description for details, section 3.5.1).
If the value definition is absent, the default value is set to 0.0 . Declaration
must end with semicolon. The only difference between ReportedVariable
and Variable is that the last value (from the last assignment to the variable
during a single sentence processing) of ReportedVariable is put into the out-
put file, while Variable is accessible only within grammar. Depending on the
file format it is written as an attribute in the sentence tag or in a comment.

example

An example of a reported variable declaration, without
a default value definition (= default is 0.0).
ReportedVariable total_sentiment;

another example variable, this will not appear
in the output file and has a default value definition
Variable other_variable = 3/2;

All variables have limited lifetime: their values are reset to default before
processing each sentence.

The variables can be accessed from rules by their names preceded by @
character.

example

Rule "example"
Match: [sen>0];
Eval: assign(@total_sentiment, @liczbas_counter + 1.sen);

in this example the total_sentiment is increased by
a value of sen attribute from # the matched word
(matched are all words with sen > 0).

3.3 Macro definitions

The macro definitions are constructed with keyword Define followed by
macro name, equality sign and the macro value. They must end with semi-
colon. They should consist of one or more syntactic entity specifications (see

36

section 3.4.2 for details on specifications syntax). They will be later used
with name preceded by $ sign. They can be used in rules and also within
subsequent macro definitions.

example

a simple definition
Define czasownik = [pos~~"winien|praet|bedzie|fin|impt|imps|inf"];

a more complex definition using a previously defined macro
Define czasownik_lub_imieslow =
[pos~~"winien|praet|bedzie|fin|impt|imps|inf|pcon|pant|pred"]
| $czasownik;

example

Rule "example"
Match: [orth~"[Nn]ie"] \$czasownik;
Eval: word(3, neg, "nie " base);

an example of macro usage in a rule

3.4 Rules

Every rule must start with a keyword Rule followed by rule title in double
quotes. It may be not unique or empty - it’s only for simplification of
grammar development. Then goes a match specification followed by a list
of operations to perform on the text.

The match specification is split into sections. Each section starts from
a keyword followed by colon, consists of a regular expression over entity
specifications ended by semicolon. This regexp can contain sequences, al-
ternatives (in parentheses, separated by |) and quantifiers (*, + and ?) like
typical regular expressions.

The available sections are: Between, Left, Match and Right (that names
are also the keywords starting each section). The Match section is a main
part of match specification - all the operations should be performed on the
entities matched by this part. Furthermore, the syntactic structures are
built from all entities matched by this section. The Left and Right sections
specify left and right context of a match. The Between section specifies a
sequence of entities which may occur between any pair of specification units
in Match or contexts. It can be for example a sigh or a pause in a spoken
language. Only Match section is required.

The list of operations to be performed on the matched text starts from
the keyword Eval followed as usual by colon. Every operation has form:

syntax

37

keyword(some, arguments);

Operations can fail, in which case execution of the list is stopped (like for
the predicates in Prolog, however any changes made by previous operations
are not reverted).

In all the operations references to specification units can be either num-
bers of units (counting from 1, not considering the contents of the Between
section) or defined in match specification capital letters.

All available operations are described in section 3.5.

example

a complex example

Rule "Uncertain: NG with genitive postmodifier between verbs/groups/aby/etc."

Between: [orth~"\.\.\."];
Left: (sb | $lub_grupa | [orth~","]);
Match: [orth~"[Jj]ego|[Jj]ej|[Ii]ch"]?

([orth~"tzw"] ns [orth~"\."])?
A[pos~"adj|pact|ppas"]* B[pos~~"subst|ger"]
C[pos~"adj|pact|ppas" && case~"gen"]*
D[pos~~"subst" && case~"gen"] ;

Right: (ns? [pos~"interp"])* [pos~~"qub|adv|conj"]*
([synh=[]] | ns? [orth~","]? [orth~"że|żeby|aby|by"] |
(ns? [pos~"interp"])* se | ns? [orth~","]);

Eval: unify(case number gender,A,B);
leave(case~~"gen",D);
unify(case number gender,6,7);
group(NG,5,5);
assign(@total_sentiment = @total_sentiment + B.sen);

references above are: A = 4, B = 5, C = 6, D = 7
note the escaped dots in regexp in Between section
(we want to match "...")

3.4.1 Specification units

Every specification unit (that is: single entity specification with optional
quantifier or an alternative closed in parenthesis) can by preceded by a
capital letter, which can be easy referred to by operations. The letters must
be unique in a whole rule. For example, for the following match specification:

example

Left: sb?
Match: A[orth~"[1-9][0-9]*"] B(ns [orth~"[,-]"] ns [orth~"[0-9]+"])?

38

A used as reference in some operation will refer to a sequence of digits and
B will refer to an optional hyphen with some more digits not separated by
space. For numeric references, 2 will have the same effect as A, 3 will be the
same as the B and 1 will refer to the optional sentence beginning from the
left context.

3.4.2 Entity specifications

A single entity specification describe one syntactic entity. It can be either
special entity specification, a token specification or a group specification.

Special entity specifications are sb, se and ns for matching sentence
beginning, sentence end and no-space dummy entities respectively.

Token specification

A token specification can match either single segment or a syntactic word.
It is a conjunction of requirements on specific attributes closed in square
brackets, like this:

example

[pos ~~ liczba && orth ~ "[12][0-9]{3}" && abs(syn) !< (2+3)*-0.8]

The attribute name may be any of those specified in tagset or ’pos’,
’base’ or ’orth’ (part-of-speech, lexical form and orthographic form). Value
specification of any enumerable attribute can be a single word or a regular
expression closed in double quotes (with standard syntax of regexps on text).
The operator between them may be one of:

• ~ - there exists an interpretation which meeting the value of attribute

• ~~ - all the interpretations meet the requirement

• !~ - there does not exist any interpretation with such a value

• !~~ - not all of the interpretations meet the requirement

For numeric attributes value specification should be a correct, constant
expression (see section 3.5.1 for details on expressions). Additionally, to
the name of numeric attribute on the left side can also have abs() opera-
tion applied. The operator between left and right hand for ”higher than”
comparison can be one of:

• > - there exists an interpretation with higher value of attribute

• >> - all the interpretations must have higher value of this attribute

• !> - there does not exist any interpretation with higher value of at-
tribute

39

• !>> - not all of the interpretations have higher values of the attribute

Similarly, <, <<, !<, !<< has corresponding meaning for ”less than” and =,
==, !=, !== has for ”equality” comparison.

Group specification

A group specification uses similar syntax:

example

[type="Month_NG" && synh=[case~"gen"]]

The differences between token specification and group specification are:

• different set of attributes: type (a string, user defined during creation
of group), semh (semantic head), synh (syntactic head) and head (both
syntactic and semantic head; have to be the same)

• - different operators - only = (has to meet) and != (must not meet),
since groups don’t have interpretations.

• - values of attributes: type is an arbitrary string, so value requirement
is like in the token specification. Heads are referred to by nested token
specification describing the group heads.

3.5 Operations overview

3.5.1 Common parts

The tag_specification used in this chapter should be in the form:

syntax

pos_value_spec:attr1_value_spec:attr2_value_spec and so on.

Every value specification of enumerable attribute can contain:

• single value for attribute or pos (e.g. subst for pos, nom for case)

• wildcards on some attributes:

– value1.value2.value3 gives 3 copies of the tag with each of the
values

– attributename* stands for all the possible values of this attribute

Multiple wildcards multiply the number of added or set interpreta-
tions.

40

• references to specific enumerable attributes of matched entities: with
explicitly specified entity - 1.case or A.gender, or to a default entity
for the operation - case, gender (in copying, 3-arg form of word or in
alter it is the 1st argument of the operation)

For numeric attributes it should be an assignment of form:

syntax

attr_name = expression

where expression may be any expression (not necessary constant) using syn-
tax defined in section

Numeric expressions

The numeric expression can use *, /, -, + binary operators, - and abs()
unary operators and parentheses.

The constant expression can be built only from floating point numbers.
The non-constant expression can also contain references to specific numeric
attributes of matched entities, in one of two forms . A 1.sen or A.sen
is a reference to a value of attribute ’sen’ from specific entity. A sen is a
reference to a value of ’sen’ from the default entity, which in copying, 3-arg
form of word or in alter is the 1st arg of the operation.

The non-constant expression may also use values of variables (using
@variablename notation).

3.5.2 agree

syntax

agree(list of attribute names, list, of, references)

Try to agree attributes from given list in all of the segments referenced
in the coma separated list. If it cannot be done the operation fails.

example

agree(number gender,1,A,B);
agree(case number gender,1,2);

3.5.3 orthnot

syntax

orthnot("regular expression", reference)

41

Check if the orthographic form is matched by the regex, if so, the oper-
ation fails.

example

orthnot("[A-Z].*", 1);

3.5.4 assign

syntax

assign(@variablename, expression)

Assign a value of expression to a given variable. The expression may be
not constant - it will be calculated during execution of action. It can also
refer to the old value of the assigned variable.

example

assign(@counter, @counter+1);
assign(@total = @total + abs(@counter + B.sen)*@ratio);

3.5.5 unify

syntax

unify(list of attribute names, list, of, references)

This operation is like the agree, but also deletes every interpretation not
agreed. Also can fail.

example

unify(number gender,1,A,B);
unify(case number gender,1,2);

3.5.6 persistent unify

syntax

persistent_unify(list of attribute names, list, of, references)

This operation is like the unify, but makes the unification persistent - ref-
erenced segments will be reunified every time one of them will change (even
if they are closed in syntactic word group and inaccessible from subsequent
rules).

example

persistent_unify(case number gender, 1, 2, 4, 6);

42

3.5.7 add

syntax

add(tag_specification, "base form", reference)

Add interpretation(s) to the referenced token. If base form is omitted,
the first interpretation’s base form is used.

See section 3.5.1 for syntax of tag_specification.

example

add(adj:sg:loc:m3:pos,,1);
add(adj:pl:dat:gender*:pos,,1);

3.5.8 set

syntax

set(tag_specification, "base form", reference)

This operation is like add, except that it first removes all the interpre-
tations the referenced token had before

See section 3.5.1 for syntax of tag_specification.

example

set(adj:sg:gen:m1:pos,,1);
set(num:pl:nom.acc.voc:m2.m3.n.f,"ile",A);

3.5.9 delete

syntax

delete(<interpretation requirement>, reference)

Delete all interpretations from referenced token matched by requirement.
The requirement is basically a segment requirement without square brackets.

example

delete(pos~impt,2);
delete(pos~ger && case~voc, 1);

See section 3.4.2 for syntax of segment requirements.

43

3.5.10 leave

syntax

leave(<interpretation requirement>, reference)

It is an opposite to delete - deletes all interpretations that are not
matched.

example

leave(pos~qub, 4);
leave(pos~"winien|praet|bedzie|fin|impt|imps|inf" && number~pl,C);

3.5.11 word

syntax

word(tag_specification, base_specification)
word(reference, partial_tag_specification, base_specification)

Build a syntactic word from whole Match section with specified interpre-
tations. The base specification can consist of sequence of strings enclosed
with double quotes and references to base or orth in the form: 1.base or
B.orth All the parts of specification is concatenated to form the base. A
special reference to 0 (zero) gives concatenated values (bases or orths) from
the whole Match section including spaces (unless there exist a ns).

The 2-argument version creates interpretations like the add operation.
The 3-argument version copies interpretations from the referenced segment
and modifies them using the value of partialtag. The tag can contain values
of some attributes, or even change the POS. In case if the created tag would
not conform to the tagset Spejd will warn and (optionally) try to correct
the tag. Several sets of interpretations can be added by providing multiple
sets of arguments separated by semicolon.

See section 3.5.1 for syntax of tag_specification.

example

word(num:pl:case*:gender*:rec, "miliard";
subst:number*:case*:m3, "miliard");

word(subst:sg:case*:m3, "rok");
word(adj:1.number:nom:m1:pos, 1.orth "-owski");

word(2, aff, base);
word(3, neg, 0.base);

44

3.5.12 alter

syntax

alter(reference, partial_tag_specification, base_specification)

This action is similar to 3-arg word action, but doesn’t build a new
syntactic word. It modifies a segment or a word pointed by reference in-
place, in the similar manner to the set action (replaces interpretations).
The difference between alter and set is that alter uses ”3-arg word”-like
interpretation building mechanism, which allows to modify only some parts
of tag without need to specify the whole complete tag. Unlike word, the
alter action doesn’t allow multiple sets of arguments.

See section 3.5.1 for syntax of tag_specification.

example

alter(3, imp:refl, base);
alter(2, inf:imp:1.neg, B.base);

3.5.13 group

syntax

group(group_type, syntactic_head_reference,
semantic_head_reference)

group(group_type, syntactic_head_reference,
semantic_head_reference, base_specification)

group(inherit_reference, syntactic_head_reference,
semantic_head_reference)

group(inherit_reference, syntactic_head_reference,
semantic_head_reference, base_specification)

Create a syntactic group from the whole Match section with type being
arbitrary word, heads given by references, and optional lexical form given
by specification with the same syntax as the base specification in the word
operation. If the lexical form is not given it defaults to 0.orth. If a head
refers to another group, it’s head will be used. If a reference to a group is
given instead of group type name, the new group’s type will be inherited
from the referenced group.

example

group(NG,2,3);
group(1,2,1, 0.orth);
group(A,2,2, 0.orth);

note: A in the last example is a reference,
not a group type (it must not be single capital letter).

45

See section 3.5.11 for syntax of base_specification.

3.5.14 join

syntax

join(group_type, syntactic_head_reference,
semantic_head_reference)

join(group_type, syntactic_head_reference,
semantic_head_reference, base_specification)

join(inherit_reference, syntactic_head_reference,
semantic_head_reference)

join(inherit_reference, syntactic_head_reference,
semantic_head_reference, base_specification)

Join all the entities in the Match section together forming a syntactic
group. If the Match contains groups, they are destroyed and their contents
are put into the group. Any token from the Match is put into the group
without changes. Arguments mean the same as in the group operation.

example

join(NG,2,2);
join(1,2,2, base);
join(A,2,2, A.base " " B.base);

note: A in the last example is a reference,
not a group type (it must not be single capital letter).

See section 3.5.11 for syntax of base_specification.

3.5.15 attach

syntax

attach(reference)
attach(reference, base_specification)
attach(group_type, reference)
attach(group_type, reference, base_specification)

Attach the rest of Match to the referenced group. Optionally sets differ-
ent lexical form and changes the type of resulting group. Preserves all the
heads.

example

46

attach(A);
attach(ADJ_G, 3);
attach(A, 0.base);

See section 3.5.11 for syntax of base_specification.

47

	Configuration
	Options types and default values
	Files locations
	tagset
	rules

	Processing
	processingChain
	maxThreads

	Input data
	inputType
	inputEncoding
	inputFiles
	ignoreDisamb

	Output
	outputType
	discardDeleted
	backupExistingFiles
	compressOutput
	compactTeiOutput
	teiSingleSyntokInterp
	teiFsGroupHeads
	teiBottomUpSyntacticStructures
	outputSuffix
	outputFilenameCore

	Diagnostics
	reportInterval
	debug
	ruleMarking
	nonfatalTagErrors
	muffleTagWarnings
	tagErrorsOnlyOnTheEnd

	Dictionaries
	Syntax of the dictionaries

	Pantera configuration
	panteraDoOwnMorphAnalysis
	panteraTagsetName
	panteraEnginePath

	Spejd semantics and internals configuration
	matchStrategy
	nullAgreement
	composeLimit
	memoryLimit
	leavePercent
	minComplexPercent
	maxNumberOfValues

	Morfeusz (morphological analyzer) configuration
	disableMorfeusz
	morfeuszSegmentationDisambiguationRules

	Plain text reader
	stringRangeMockID
	acronymsAfter
	acronymsBefore
	ogonkifyFile
	ogonkifyStrategy
	ogonkifyMinLength
	ogonkifyMinLength

	Additional configuration
	Tagset syntax
	Attributes
	Parts of speech

	Input and output formats
	Input only
	Plain text

	Input-output formats
	xcesAna
	TEI

	Spejd grammar
	Terminology
	Variable definitions
	Macro definitions
	Rules
	Specification units
	Entity specifications

	Operations overview
	Common parts
	agree
	orthnot
	assign
	unify
	persistent_unify
	add
	set
	delete
	leave
	word
	alter
	group
	join
	attach

