
TermoPL∗ 8.0
user manual

Institute of Computer Science
Polish Academy of Sciences

30.12.2024

∗TermoPL is co-funded by CLARIN-PL

1

1 Introduction

TermoPL is a tool created to extract terminology from domain corpora. It can also be used
for other languages as long as you define the appropriate tagset and grammar. The program
extracts phrases, candidates for terms, using Universal Dependency (UD) structures obtained
from UD parsers or through a simple grammar that can be customized. It applies the C-
value method to rank term candidates being either the longest identified acceptable phrases
or their nested subphrases. The method operates on simplified base forms in order to unify
morphological variants of terms and to recognise their contexts. For the method using simple
grammar templates, we support the recognition of nested terms by word connection strength
which allows us to eliminate truncated phrases from the top of the term list. For Polish,
the program has an option to convert simplified forms of phrases into correct phrases in the
nominative case. TermoPL accepts as input morphologically annotated and disambiguated
domain texts and creates a list of terms, the top part of which comprises domain terminology.
It can be used to compare two candidate term lists using four different coefficients showing
asymmetry of term occurrences in this data. For Polish texts, TermoPL can group semantically
related terms using plWordNet1.

You can learn more about TermoPL from [7].

2 How it works?

ThermoPL can extract candidate phrases for terms using two methods. In the first, terms are
identified using simple grammar templates that can be customised. In the second, terms are
extracted from universal dependency (UD) trees created by the UD parser.

Regardless of which mode the program operates in, terms are identified by their simplified
(lemmatised) forms. Simplified forms enable the program to recognise all morphological forms
of a phrase as corresponding to one term. Morphological forms of phrases may significantly
differ for languages with reach inflection such as Polish. For example, katedra romańska ‘ro-
manesque cathedral’ whose simplified form is katedra romański has 14 forms (e.g. katedrze
romańskiej loc,sg, katedrom romańskimdat,pl) depending on the case and number.

The number of considered term candidates can be reduced by the user, if he/she submits a
list of lemmas of stop words. If a term candidate contains any of the stop words, it is eliminated.
For example, ta katedra romańska ‘this romanesque cathedral’ should be excluded from the
list of term candidates for obvious reasons, although it conforms to the grammar used by
the program. Similar problems produce compound prepositions. For example, the compound
preposition z naszego punktu widzenia ‘from our point of view’ contains the grammatically
valid term candidate nasz punkt widzenia ‘our point of view’, which should not be considered
as a term. One can further shrink the list of considered terms, if he/she specifies the list of
general or out-of-domain terms.

Once the list of phrases containing potential terms has been determined, it is sorted accord-
ing to the value of the term ranking function from highest to lowest. As the ranking funcion
the C-value is used (see Section 3.1).

Finally, the program attempts to rewrite all terms from their simplified (lemmatised) forms
to their basic (nominative) forms. A base form of a term is usually singular, unless all phrases
(maximal or nested) corresponding to this term are plural noun phrases. Letter case used in
base forms is determined by orthographic forms associated with each term. If a particular word
appears in upper case in all phrases, it remains in upper case in the base form. Otherwise, it
is converted to lower case. For Polish, the new version of the morphosyntactic analyser and

1http://plwordnet.pwr.wroc.pl/wordnet/

1

generator Morfeusz [14] is used in this process. For other languages, TermoPL prefers the
nominative singular form or the most common form of the term if its nominative form is not
present.

A generated list can be truncated by the user to include only multi-word terms and/or
some specified number of top ranked term candidates.

The program can be used in two modes: batch and interactive. For the interactive mode
a graphical user interface is provided.

2.1 Acceptable input

The program accepts UTF8 encoded input with morphosyntactic analysis or additionally with
grammatical structure in various formats such as NKJP[10], XCES[5], CoNLL-U2 and the
simple, flat format in which each token is represented by a single line of text consisting of an
orthographic form (as it appears in a processed document), its lemma and a tag. The following
two lines are acceptable input describing the token in flat format files:

form<TAB>#lemma<TAB>#tag#
form<TAB>lemma<TAB>tag

Sentences are separated by an empty line or one of the lines below:

&<TAB>#&<TAB>#&#
&<TAB>&<TAB>&

The input file of the flat format may contain more than one document from the analysed
corpus, which are separated by a line of text starting with %%. Separating documents is useful
if we want to compare corpora using the term weight method described in Section 3.6.

For backward compatibility, the program also supports files in which each token is repre-
sented as follows:

form<TAB>lemma<TAB>tag, or
form<TAB>lemma<TAB>tag<TAB>nps,

where ’nps’ means ’no preceding space’ and sentences are separated by a line containing single
string ’eos’ (end of sentence). Files in this format must have the extension ’tgt’.

It is also possible to use untagged input files. In this case, the files are first processed by
the Stanza Dependency Parser [11], which creates files in CoNLLu format.

2.2 Using simple template grammars

TermoPL reads input sentence by sentence and identifies the maximal sequences of consecutive
tokens that are recognised, either by the standard built-in grammar presented in Figure 1, or
a custom grammar provided by the user. In the built-in grammar, NAP and NAP_GEN both
denote noun phrases, with the proviso that NAP_GEN denotes noun phrases in the genitive
case. It is assumed, of course, that tokens matched by NAP (and NAP_GEN) must agree in
number, case and gender. In other words, the program first extracts the longest (maximal)
phrases consisting of a noun phrase, possibly modified by other noun phrases in the genitive
case. Then, it splits them into smaller parts (nested phrases) that still conform to the given
grammar. It provides four methods for splitting maximal phrases. The first one searches for
all subphrases that satisfy the given grammar. This method produces considerably more term
candidates than the remaining three methods, since it does not care if the resulting terms are

2https://universaldependencies.org/format.html

2

NPP : $NAP NAP_GEN ∗;

NAP [agreement] : AP∗ N AP∗;

NAP_GEN [case = gen] : NAP ;

AP : ADJ | ADJA DASH ADJ | PPAS ;
ˆN [pos = subst , ger];

ADJ [pos = adj];

ADJA[pos = adja];

PPAS [pos = ppas];

DASH [form = "-"];

Figure 1: The built-in grammar.

semantically odd, truncated phrases. For example the phrase nominalna roczna stopa pro-
centowa ’nominal annual interest rate’ contains a grammatically acceptable subphrase roczna
stopa which looks odd and should not be accepted as a term. The rest of the phrase splitting
methods try to eliminate such phrases using NPMI driven recognition of nested phrases (see
Section 3.2) introduced in [6]. These methods try to split a phrase at the weakest connection
point expressed by NPMI coefficient. The first method always divides the phrase at the weak-
est connection, regardless whether the resulting subphrases conform to the given grammar.
The second one tries to divide the phrase into subphrases so as to at least one of them satisfies
the grammar rules. The third method is very similar to the second one except that it prefers
cases when two of the resulting subphases satisfy the grammar. This preference is expressed
by some predefined coefficient. By default, TermoPL sets this coefficient to 120%.

To obtain base forms a token or a group of tokens matched with a symbol marked with
the $ character are replaced by their nominative forms. All other tokens are left unmodified.
In the grammar given above, the only symbol marked with $ is NAP . Therefore all NAP
phrases are transformed into their nominative forms, whereas NAP_GEN phrases are left as
they appear.

It is necessary to indicate the head phrase of the extracted term. The symbol identifying
the phrase head is preceded by a ˆ character. In the built-in grammar, the N symbol (noun)
is chosen as the head of the phrase.

2.3 Using universal dependency structures

The UD project assumes a consistent structure of annotation schemes for many languages. In
the terminology candidate identification algorithm described below, this consistency is used to
define rules for selecting nominal phrases that are based on four sets of information. Two sets
consist of UD POSs. The first – head-pos – contains UD POSs of nodes that can be heads of
the term phrases, i.e. NOUN and PROPN. The second – non-head-pos – contains UD POSs of
nodes that can be part of the term phrases but not their heads, i.e. ADJ, ADP, ADV, DET and
NUM. The next two sets consist of relations: obligatory-rel and facultative-rel. The first
set groups relations between words that should appear together in terminology phrases, while
the second set contains relations between words that may or may not appear in a sentence.
The appropriate relations are listed below:

obligatory-rel: amod:flat, case, case:poss, ccomp, compound, compound:prt, det, expl:pv, fixed,
flat, iobj, nmod:arg, nmod:flat, nsubj:ger, obj, obl:agent,obl:arg, xcomp.

3

facultative-rel: acl, advmod, advmod:emph, amod, appos, nmod, nmod:poss, nummod, nummod:gov,
obl

First, the program selects all the nodes that can be included in the terminology phrases,
creating a list of potential terminology nodes. This list includes all nodes whose UD POS belong
to one of the above-mentioned sets: head-pos or non-head-pos. For hyphenated compound
words, which are allowed in many languages, all nodes of the UD structures representing them
are placed in the list of potential terminology nodes. All nodes from structures representing
hyphenated compound words, except those that are heads of these structures, are also placed
in the list of hyphenated nodes. Each of the nodes in the list of hyphenated nodes will be
selected for creating phrases if and only if its head is also selected.

In the structure where only relations between terminology nodes are left in place, it is
checked whether, for each node, all obligatory-relations are in the current structure. Doing
so, some truncated phrases are avoided, as we do not want to create phrases with nodes that
have unrealized requirements.

The process of making phrases is repeated in a loop for all nodes in the list of potential
terminology nodes. For each node, all combinations of dependent nodes are considered, where
nodes connected by obligatory-relations and those from the list of hyphenated nodes must
be included in the phrase, while nodes connected by facultative-relations may be omitted.
Only those phrases for which the head element is in the head-pos set are accepted as term
candidates. The list of established phrases for the considered node is passed to the upper node
(if relevant), and the considered node is removed from the list of potential terminology nodes.
The whole procedure is repeated until the list of potential terminology nodes is empty.

More on the extraction of terms directly from UD structures can be found in [8].

3 Formulas used in calculations

Let us first introduce some useful notations:

A domain corpus
B contrastive corpus
AB merged corpora A and B
T (X) set of terms of a corpus X
D(X) set of documents in a corpus X

t term
d document

fX(t) frequency of a term t in a corpus X
ft(d) frequency of a term t in a document d
NY

X size of a corpus X with respect to T (Y), i.e.
∑

t∈T (Y) fX(t)

SX size of a corpus X, i.e. NX
X

3.1 C-value

TermoPL ranks term candidates using modified version of C-value described in [4]. For a given
phrase p, its C-value is defined as follows:

C-value(p) =

 l(p)×
(
f(p)− 1

|LP |
∑

lp∈LP
f(lp)

)
, if |LP | > 0,

l(p)× f(p), if |LP | = 0,

where f(p) is the number of occurrences of a phrase p, LP is a set of different phrases containing
p, |LP | is the number of phrases in LP and l is a function which increases weight for longer

4

phrases. It is equal to the logarithm (log2) of phrase length for multi-word expressions and a
constant (TermoPL uses 0.1) for one-word terms.

What it follows from the above equation, the chance that a given phrase can be assumed
as a domain term increases with the number of contexts in which it occurs. What is meant by
a context and hence, what the term "different phrases" means in the definition of C-value will
be explained in Section 6.5 (page 17).

3.2 Normalised pointwise mutual information

In order to determine the connection strength for a pair of words, TermoPL counts normalised
pointwise mutual information (NPMI) proposed by [2] for all lemmatized bigrams in a consid-
ered corpus.

NPMI (x, y) =

(
ln

p(x, y)

p(x)p(y)

)/
− ln p(x, y),

where p(x, y) is a probability of the ’x y’ bigram in the considered corpus, and p(x), p(y) are
probabilities of ’x’ and ’y’ unigrams, respectively.

3.3 Corpora-comparing log-likelihood

The Corpora-comparing log-likelihood (LL) coefficient [12] points out whether or not a given
term occurs significantly more frequent in one of two tested corpora. It is calculated in the
following way:

LL(t) = 2

(
fA(t) log

(fA(t)

EA(t)

)
+ fB(t) log

(fB(t)

EB(t)

))
,

where EX = SX
fA(t)+fB(t)

SA+SB
. In calculations we can use C-values instead of frequencies. The

size SX of a corpus is measured then by the sum of C-values of all its terms.

3.4 Term frequency inverse term frequency

Term frequency inverse term frequency (TFITF) method [1] combines the frequency of a term
t in the domain corpus with inverse term frequency in both domain and contrastive corpora.

TFITF (t) = log(fA(t)) log

(
NA

AB

fAB(t)

)
.

We can choose to use C-values instead of frequencies in all calculations, just as in case of LL
coefficient.

3.5 Contrastive selection of multi-word terms

Contractive selection of multi-word terms (CSmw) [1] is defined by the following equation:

CSmw(t) = log
(
log(fA(t))×NA

B × fA(t)

fB(t)

)
CSmw coefficient can also be calculated with C-values.

5

3.6 Term weight

Term weight (TW) [9] depends on the domain relevance (DR) of a term t and its domain
consensus (DC) expressed by the entropy of the distribution of t in the domain corpus A.

TW (t) = αDR(t) + βDC ∗(t),

where α and β are numbers from (0, 1), and DR and DC are defined as follows:

DR(t) =
PA(t)

max (PA(t), PB(t))
,

PX(t) =
fX(t)

SX
,

DC (t) = −
∑

d∈D(A)

(
pt(d) log(pt(d))

)
,

DC ∗(t) =
1

L
DC (t),

L = max
t∈T (A)

DC (t),

pt(d) =
ft(d)

SA
.

Unlike the other three methods presented above, TW works on frequencies only. Default
values for α and β are 0.9 and 0.3, respectively.

4 Customising the tagset

TermoPL allows the use of alternative tagsets to define grammars.
The tag consists of a list of morphosyntactic markers. The first element of this list is

always corresponds to the grammatical class (pos) of the segment. It is followed by markers
defining grammatical categories that characterise the selected segment.

pos : cat0 : ... : catn, n ≥ 0.

Sometimes the tags are reduced to just a part of speech. Part-of-speech tags are used in
the Penn Treebank Project3, for example. In order to use this kind of tagset, one has to put
the following line as the only line in the tagset structure definition file:

TAG = pos.

By default, list items that make up a tag are separated by a colon, but the user can change
this using DELIMITER directive in a tagset structure definition file. For example, if we decide
to separate items with comma, we have to put the following line as the first line in a tagset
structure definition file:

DELIMITER = ”, ”.

3https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

6

Sometimes the tags are fixed-length strings where each position encodes one morpholog-
ical category with one character. Such positional tags are used, for example, by the Prague
Dependency Treebank 2.04. In such cases we use an empty separator:

DELIMITER = ””.

TermoPL allows you to define tagset structure by two methods. The first of them (catego-
ries by positions) requires that for a given grammar class, markers defining grammatical
categories always appear in the same order in the tag. Using this method of defining a tagset,
we do not need to specify what values the markers corresponding to particular grammatical
categories can take. The program will not check whether a given value actually corresponds
to a given category. The user must define the set of grammatical categories of the tagset and
the order of occurrence of markers corresponding to the categories in the tag.

<categories by positions>
subst: number, case, gender, sgender
adj: number, case, gender, degree
...

It may happen that a certain grammatical category does not apply to the description
of the segment, although in the general case it characterises the class to which the segment
belongs. Such a category is, among others, sgender for class subst in the default tagset used
by TermoPL. The marker (let’s call it cati) corresponding to this category can be omitted
from the tag, but only if it appears at the end. Otherwise, it can be substituted by some place
holder or an empty space must be left at this position in the tag, where, according to the class
definition, this marker should appear:

pos : cat0 : . . . : cati−1 : : cati+1 : . . . : catn.

For positional tags such as those used by the Prague Dependency Treebank, the user must
specify grammatical categories and their order in the tag.

<categories by positions>
cat0, cat1, . . . , catn

The second method (categories by values) assumes that the tag values corresponding
to different grammatical categories are different. The grammatical category will be identified
in this case based on the marker value. When defining grammatical categories, the user must
specify the values of the corresponding markers.

<categories by values>
number: sg, pl
case: nom, gen, dat, acc, inst, loc, voc
gender: m1, m2, m3, f, n
sgender: ncol, col
degree: pos, com, sup
...

The default TermoPL tagset is defined by the categories by values method.
The user can define composite categories whose values will be sets containing the values of

other basic categories defined in the tagset.
4http://ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/m-layer/html/ch02.html

7

<definitions>
agreement = number, case, gender
...

TermoPL is using the following default tagset:

DELIMITER = ":"
<categories by values>

number: sg, pl
case: nom, gen, dat, acc, inst, loc, voc
gender: m1, m2, m3, f, n
sgender: pt, ncol, col
person: pri, sec, ter
degree: pos, com, sup
aspect: imperf, perf
negation: aff, neg
accent: akc, nakc
pprep: praep, npraep
accom: congr, rec
aggl: nagl, agl
vocality: wok, nwok
fstop: pun, npun

<definitions>
agreement = number, case, gender

class meaning (in Polish) categories
fin forma nieprzeszła number:person:aspect
bedzie forma przyszła czasownika BYĆ number:person:aspect
aglt aglutynant czasownika BYĆ number:person:aspect:vocality
praet pseudoimiesłów number:person:gender:aspect:aggl
impt rozkaźnik number:person:aspect
imps bezosobnik aspect
inf bezokolicznik aspect
pcon imiesłów przysłówkowy współczesny aspect
pant imiesłów przysłówkowy uprzedni aspect
ger odsłownik number:case:gender:aspect:negation
pact imiesłów przymiotnikowy czynny number:case:gender:aspect:negation
ppas imiesłów przymiotnikowy bierny number:case:gender:aspect:negation
winien czasownik typu WINIEN number:gender:aspect
pred predykatyw —
subst rzeczownik number:case:gender:sgender
depr rzeczownik – forma deprecjatywna number:case:gender
adj przymiotnik number:case:gender:degree
adja przymiotnik przyprzymiotnikowy —
adjp forma poprzyimkowa case
adjc przymiotnik predykatywny —
adv przysłówek degree
num liczebnik number:case:gender:accom:sgender
ppron12 zaimek nietrzecioosobowy number:case:gender:person:accent

8

continued...
class meaning (in Polish) categories
ppron3 zaimek trzecioosobowy number:case:gender:person:accent:pprep
siebie zaimek SIEBIE case
prep przyimek case:vocality
conj spójnik współrzędny —
comp spójnik podrzędny —
brev skrót fstop
interj wykrzyknik —
part partykuła vocality
frag człon frazeologizmu —
interp interpunkcja —
ign forma nierozpoznana —

Table 2: Grammatical classes in the default tagset

category meaning (in Polish) values
number liczba sg, pl
case przypadek nom, gen, dat, acc, inst, loc, voc
gender rodzaj m1, m2, m3, f, n
sgender przyrodzaj pt, ncol, col
person osoba pri, sec, ter
degree stopień pos, com, sup
aspect aspekt imperf, perf
negation zanegowanie aff, neg
accent akcentowość akc, nakc
pprep poprzyimkowość praep, npraep
accom akomodacyjność congr, rec
aggl aglutynacyjność nagl, agl
vocality wokaliczność wok, nwok
fstop kropkowalność pun, npun

Table 3: Grammatical categories in the default tagset

5 Customising the grammar

As it was mentioned, the built-in grammar can be replaced by some user-defined grammar. To
specify a grammar one has to define production rules and tests that have to be performed on
tokens or sequences of tokens during the matching process. Rules have the following form:

<symbol> ["[" <test-list> "]"] ":" <regular expression over symbols> ";",
<symbol> "[" <test-list> "];".

The left-hand side of a rule consists of only one nonterminal symbol. The right-hand side is
a regular expression over the set of symbols. Regular expressions allowed by the program may
contain alternatives separated by ’|’, and quantifiers: ’?’, ’*’ and ’+’, which indicate zero or
one, zero or more and one or more occurrences of the preceding symbol, respectively. No loops

9

are allowed, which means that the rewriting process cannot yield to symbol that appeared on
the left hand-side of an applied rule.

For each symbol it is possible to specify <test-list>, i.e. a test or a series of tests performed
during the matching process.

<test> ["," <test>]

Tests can be defined on the left-hand side of a rule or in separate statements. Tests,
separated with semicolons, are placed in square brackets just after a symbol to which they
relate.

A test can be an agreement checking function that refers to some grammatical category.
For a given sequence of tokens, it returns true if and only if all tokens sharing the grammatical
category being tested are assigned the same value for this category. A test can also be an
expression returning boolean value:

<selector> <op> <string> ["," <string>],

where selector is a function defined on tokens and lists of tokens and returning a string value,
and op is one of the following operators: ’=’, ’! =’, ’∼’ and ’! ∼’. The first two operators serve
to compare strings if they are equal (’=’) or not (’! =’). With the remaining operators we can
check whether a string returned by a selector matches (’∼’) or not (’! ∼’) a Java-style regular
expression. If there are more strings on the right side of a positive operator (’=’ or ’∼’), a test
succeeds whenever it succeeds for at least one of these strings. In case of negative operators
(’! =’ or ’! ∼’) a test succeeds if it succeeds for all given strings.

Tests can be applied to single tokens or sequences of tokens. In the built-in grammar
presented on page 3, N [pos = subst , ger] means that a token matched with symbol N must
be a substantive or a gerund, whereas NAP [agreement] means that a sequence of tokens
matched with NAP must agree in number, case and gender, since agreement is a composite
category consisting of categories number , case and gender defined in the tagset (see page 8).
The expression NAP [agreement] can be replaced by NAP [number ; case; gender]. Note that a
sequence of tokens matched with NAP may contain tokens for which agreement test is not
applicable, e.g. ‘-’. In such cases testing is performed only on those tokens for which it makes
sense.

ThermoPL provides four built-in selectors whose names are self-explaining: form, lemma,
tag and pos. The other selectors correspond to the grammatical categories defined in the tagset.

6 Graphical user interface

TermoPL is a multi-document application. The user may open and analyse several sets of
terms simultaneously. The graphical user interface of the program consists of several windows,
dialog boxes and menus. In case of Windows and Unix operating systems, all these graphical
elements are gathered in one virtual desktop window.

The user can navigate through all functionality of the program using menus. They are
located either on the top of the screen (Mac OSX), or on the top of the virtual desktop
window (Windows, Linux).

6.1 The Terms Window

When the program finishes the extraction process it displays a table of term candidates as
it is shown in Figure 9. For every term the table shows: term’s position on the list (#),
its rank (Rank), base/simplified form (Term), C-value (C-value), length (Length), number of

10

Figure 2: The virtual desktop for TermoPL.

occurrences (Freq_s), number of occurrences within the context of another terms (Freq_in)
and the number of these contexts (Context #). The table can be sorted by any (except the
first) column by clicking on its header. Columns may be sorted in ascending () or descending
() order.

As it was mentioned before, the list of displayed terms can be truncated. The user may
wish to view only multi-word terms or only those that are top-ranked. If the list of displayed
terms is reduced to 1000 top-ranked terms, it might actually contain more entries as some of
the terms may have assigned the same rank. The user may also limit the displayed list of terms
by filtering those that contain a specified sequence of characters. Clicking the search icon ()
reveals the available term filtering options (Figure 4). The user has three options to control
the filtering process: he/she can choose a case-sensitive search, select whole-word strings, or
define a java-style regular expression.

Truncation always starts from collecting all items that contain a specified sequence of
characters, then all phrases with a length outside the specified range are removed, and finally
the highest ranked terms are selected.

In case when the user decided to compare the extracted set of terms with other, previously
extracted set of terms, the Terms window looks like on Figure 5.

In the window showing comparison results, the value of the chosen comparing coefficient is
displayed just next to the right of the C-value. In Figure 5, log-likelihood values are shown.

The colours of the table’s rows correspond to a term representativeness. All shades of
yellow point out that a corresponding term is more representative for the domain corpus.
Green colours show the opposite. The more saturated colour, the more representative a given
term is for one of two corpora.

The Terms window is the main window for a document describing an extracted set of terms.

11

Closing the main window will automatically close all windows associated with one document,
currently analysed set of terms.

Figure 3: The main window showing search results.

Figure 4: Term filtering options.

12

Figure 5: Results of two corpora comparison.

Figure 6: The meaning of table’s colours.

13

6.2 The Forms Window

One may choose to collect all forms of extracted terms as they appear in an analysed corpus
(see Section 6.8). In this case, selecting a row in the table of terms allows to display all forms
of the corresponding term (see Section 6.9). For each form, the number of its occurrences as
an independent and nested phrase is given in square brackets.

Figure 7: The window presenting all forms of a given term found in an analysed corpus.

6.3 The Sentences Window

If the user decided to index all sentences with extracted terms (see Section 6.8), selecting a
row in the table allows to display all sentences in which the selected term appears (see Section
6.9).

Figure 8: The window presenting all sentences containing a given term found in an analysed
corpus.

14

6.4 The Related Term Groups Window

TermoPL has a functionality that enables semantic grouping of terms extracted from Polish
texts [13]. The program combines each extracted term with less specific terms and identifies
those that are semantically related to it using the information contained in plWordNet[3].

In the first stage of this process, for each extracted phrase, the program analyses phrases
containing all of its words. A longer phrase may turn out to be a term that narrows down
the meaning of the selected phrase, and a phrase of the same length may be synonymous
with it. For example the phrases ’pawo autorskie’ and ’autorskie prawo’ (copyright law) are
considered as synonymous, and the phrase ’amerykański rynek wydawniczy’ (the American
publishing market) is more specific than the phrase ’rynek wydawniczy’ (publishing market).
However, we cannot treat phrases as bags of words. For example, the term ’prawo autora’
(author’s law) contains the same words as the term ’autor prawa’ (author of the law), but they
do not mean the same thing. Grouping should link phrases built around a common head. For
phrases ’prawo autora’ and ’autor prawa’, their heads are ’prawo’ (law) and ’author’ (author),
respectively. They are different, so these terms cannot be assigned to the same group.

The part of the phrase that should be converted to the nominative form is treated by
TermoPL as the head of the phrase. As mentioned on page 3 in Section 2, the user can mark
the head phrase with the ˆ character when defining the grammar.

In the second stage of grouping terms, the program examines all possible combinations of
replacing words in terms with words associated with them according to plWordNet. If the
resulting phrase belongs to the set of generated terms, it is classified as a synonym or only
as a term semantically related to the corresponding term. The category to which the term
is assigned depends on the semantic relationship between the replaced words and the words
that have replaced them. For grouping, the program uses several synset and lexical relations
defined in plWordNet.

Table 4: Relation types used for grouping

category relation ID relation type
synonym 1 belonging to the same synset

169 kind of interparadigmatic synonymy
related 10 hyponymy

11 hyperonymy
51 characterized by feature or state
52 feature or state
108 fuzzynymy of synsets
148 similarity
149 description
242 role: material

61, 62, 63, kind of interparadigmatic synonymy
141, 142, 244

The window presenting groups of terms related to the selected term is split into two parts.
The first part presents the hierarchy of terms related to this selected one. The lower a node is
in the hierarchy, the more specific terms it represents. The second part lists those terms that
are somehow related to the chosen one. This list can be changed by clicking any node from the
hierarchy. When you double-click the term name in any node of the hierarchy or in the list of
related terms, the term will be selected, and thus the content of the window will be updated.

15

Figure 9: The window presenting groups of terms related to the term ’prawo autorskie’.

16

6.5 The Options Dialog

The user can change the behaviour of the program by setting different options. In the inter-
active mode, the initial values for the options are loaded from the file .TermoPL-5, which is
created by the program in the user’s home directory when it is run for the first time. This file
is modified whenever the user changes some of the options and when the program terminates.

The program keeps several copies of options set. The first copy, let’s call it the master
copy, is created immediately when the program starts. This copy is then used whenever the
user chooses to create a new set of terms. The copy of the master copy is associated with
the newly created set of terms and will be used only with this set. Modifying the options for
the currently used set of terms will modify only the options associated with this set and the
master copy. Options associated with other sets of terms will remain unaltered.

Figure 10: Optios – Filters – Stop Words.

The Options dialog consists of seven panels. In the first three panels we can define lists of
filters: stop words (below), compound prepositions (page 18) and common terms (page 19).

17

These lists can be loaded [Load...] from UTF-8 encoded text files replacing existing
lists, or loaded and merged (merge) with existing lists. Each list can be modified by the user.
Double-clicking an item of a list calls a text editor. Clicking the buttons (+) and (–), adds
a new entry or removes the selected item(s) from the list, respectively. Modified list can be
saved [Save...] to a file.

The list of stop words consists of lemmatized forms. Each line of text in a file with stop
words contains only one word. By default the list of stop words is empty. The default set of
stop words can be loaded from termopl_sw.txt.

Figure 11: Options – Filters – Compound Prepositions.

The list of compound prepositions looks very much the same as the list of stop words.
However, each line of a compound prepositions list defines a pattern. Each pattern contains
obligatory and/or optional elements. For example, the pattern ’na [sam] koniec’ has two
obligatory elements ’na’ and ’koniec’, and only one optional element ’sam’. It will match
expressions like ’na koniec’ and ’na sam koniec’. Some of the elements define an alternative
of words. For example, the pattern ’na [cały | sam | ten] czas’ contains optional element
being an alternative of three words: cały, sam and ten. It means that the whole pattern will

18

match expressions like ’na cały czas’, ’na sam czas’ and ’na ten czas’. If the user decides to
make an alternative obligatory, it must put it in parenthesis ’(...)’ instead of brackets. The
symbol #adjp frequently used in patterns matches a single adjective.

By default the list of compound prepositions is empty. The default set of compound
prepositions can be loaded from termopl_cp.txt.

Figure 12: Optios – Filters – Common Terms.

The list of common terms is used to eliminate from the final list of extracted term candidates
those which are general or out-of-domain. The user may choose to edit their simplified or base
forms by selecting or deselecting the Show simplified forms check box. For new base forms,
simplified forms are automatically generated. If we add a simplified form of a term, its base
form becomes the same string as the simplified form.

Each line of a file with common terms contains a simplified form of a term and, optionally,
its base form put in brackets.

By default the list of compound prepositions is empty. The default set of common terms
can be loaded from termopl_ct.txt.

Working with base forms requires the Morfeusz 2.0 libraries to be installed.

19

Figure 13: Options – Grammar.

Using this panel, we can inform the program about the language of the texts to be processed,
the method used to extract terms, and decide which grammar and which tagset should be used.

The choice of language is important if the input is plain, untagged text. This information
is passed to an external tool (the Stanza UD Parser), which will create a CoNLLu file(s) for
further analysis. By choosing Polish, we enable a more precise method of converting terms
into their base form. We can also take advantage of term grouping using plWordNet.

We can select alternative grammar by clicking on [Change grammar...] button and se-
lecting one of the grammar files. By choosing the custom grammar we are allowed to use an
alternative tagset. This tagset can be changed by clicking on [Change tagset...] button and
selecting one of the tagset files. The use of Morfeusz to generate base forms of the extracted
terms from Polish texts is possible only if the built-in tagset is selected. Grammar files as well
as tagset files should be UTF-8 encoded text files.

To use the Stanza parser, it is necessary to indicate where the Python interpreter (see
Section 8) with the stanza module installed is located. This can be done by clicking on
[Change interpreter...] button and selecting the python executable.

20

Figure 14: Options – Search.

The user should use this panel to set up the term extraction and context counting methods.
The user has three options when he/she chooses to use NPMI driven method to search

for nested phrases. The first one always divides the phrase at the weakest connection point
indicated by the lowest NPMI value and continues this process for the resulting subphrases
even if they do not conform to the grammar rules. The second one is more sophisticated. It
tries to divide the phrase into subphrases so as to at least one of them safisfies the grammar
rules. It chooses the weakest possible connection point according to NPMI value to do the
split and continue this process for the resulting subphrases. If the phrase cannot be split in
such a way, the first method is used. The third method, which is the default method, also tries
to divide the phrase into subphrases so as to at least one of them safisfies the grammar rules.
However, it preferes the cases where both phrases obtained after splitting are accepted by the
given grammar. This preference is expressed by the Preference factor. If the phrase cannot
be split in such a way, the second method is applied. If the user decides not to use any of the
NPMI methods, then all possible nested phrases are checked, unless the Trim phrases from
left to right box is selected. In this case, nested phrases are generated by cutting out the
initial fragment of a maximal phrase.

21

By a context of a nested phrase we will understand a pair (L,R), where L and R are words
located just before and right after the nested phrase. In some cases L or/and R can be empty.
For example, any maximal phrase, which is not embedded in any larger acceptable phrase, has
an empty context. The question is how we will count the contexts. The first method, which is
the default method used by the program, counts different left and right contexts separately and
then takes the maximum of these two values. The second method works similarly; however,
it does not differentiate between pairs (L,R) and (R,L). The last method counts all different
pairs (L,R).

Grouping of terms is performed when the Group terms check box is selected. To use
plWordNet for grouping, the user must first download the appropriate xml file. This file is
available at http://plwordnet.pwr.wroc.pl/wordnet/download.

Figure 15: Options – Compare.

Using Compare panel we can set up corpora comparing methods and their parameters.
They are described in Sections 3.3 – 3.6.

22

Figure 16: Options – Export.

The user can decide which columns from the results table will be exported to a text
file. He/she can also decide whether to save all forms of terms collected by the program.
Not every file format of saved terms is acceptable for corpora comparing. The simplest one
contains exactly three fields: Term (simplified form), C-value and Freq_s. The other
acceptable formats contain all fields from which we can exclude Term (base form) and/or
LL/TFITF/CSmw/TW.

Figure 16 shows default settings for the Export panel.

6.6 Workspace

The location of all files used by TermoPL for analysis is determined relative to the selected
folder called the workspace. The user should place all analysed files in this folder. However,
they can be arranged in subfolders. By default, the program working in interactive mode
assumes that files are placed in TermoPLWorkspace folder, which is automatically created in
the user’s home directory. It is possible to define multiple workspaces and they can be changed
at any time. In batch mode, user has to define workspace explicitly. Otherwise, all input files

23

must be specified by their absolute paths.

Figure 17: Workspace window

6.7 The File Menu

The File menu contains commands that allow to create, open, close, save, export and merge
sets of terms.

To create a new set of terms one should choose the New command. The user will then be
asked to select files for terms extraction.

With Open command we can choose existing set of terms to be loaded from a computer
disk for further analysis. These files have extension .trm. By opening a .trm file we restore
the list of extracted terms and all settings of the program, i.e. options and files used in the
extraction process.

The Merge... command allows to combine the currently analysed set of terms with some
other set from the disk. Merging two lists of terms is not equivalent to performing the entire
extraction procedure on the combined set of files used to generate these lists. However, the
results obtained with these two methods should not differ significantly. These differences result
from how the NPMI is calculated (see Section 3.2). In the case of merging, NPMI is calculated
separately for two sets of input files. When we perform the search on the combined set of
input files, the NPMI is calculated for this combined set. The abovementioned methods are
equivalent, if we resign from using the NPMI during extraction process. Merge removes all
information about the term grouping.

The Open Recent submenu gives access to the recently opened set of terms.
To close the currently analysed set of terms we can use Close command. This is equivalent

to closing the main window (see Section 6.1).
The Save and Save As... commands serve to save the list of terms together with the

program’s options and files used in the extraction process. Files saved with these commands
can be further used for corpora comparing.

The Workspace command allows to change the current workspace.
The user can also export (the Export... command) the search results to UTF-8 encoded

text file. The user can decide which fields of the terms table should be saved (see page 23).
Only those terms are saved that are actually listed in the terms table. Exported search results
can be subsequently used for corpora comparison.

The user may choose to save all forms of the extracted terms (the Export Forms... com-
mand) and sentences which contain them (the Export Sentences... command) to separate

24

UTF-8 encoded text files, provided that the appropriate information has been collected during
the search process.

Identified term groups can be stored (the Export Groups... command) in an XML file of
the following format:

<term-list>
<term id = "t1" name = "xxx yyy zzz">

<eq id = "e1" />
...
<parent id = "p1" />
...
<child id = "c1" />
...
<rel id = "r1">

<subst word = "w1" expr = "expr1" replaced = "s1"> (or <nosubst />)
<reltype id = "n1" name = "xxx" />
...

</subst>
...

</rel>
...

</term>
...

</term-list>

Realtion types are numbers from plWordNet.
On Microsoft Windows and Unix operating systems, the File menu contains the Exit com-

mand, which terminates the program. On Mac OS, the same function has the Quit command
placed in the TermoPL menu located next to the Apple menu.

6.8 The Search Menu

The basic functions of this menu are term extraction (Extract) and comparing two sets of
terms (Compare).

To perform a term extraction one has to load a corpus by selecting a file, a group of files,
or a whole directory (the Select File(s)... command).

The Select Contrastive Set of Terms command serves to select data for comparison
purposes.The same can be done with the Options dialog (see page 22).

Choosing the Select File(s) command displays a dialog (Figure 18) with which the user
can create and edit the list of files used in the extraction of terms.

Clicking the buttons (+) and (–), adds a new entry or removes the selected item(s) from
the list, respectively. Files that were deleted or moved to some other location are marked with
(). Those located outside the current workspace are marked with ().

The list is divided into two parts. The first part (highlighted in orange) contains files that
were previously used to generate the currently analyzed set of terms. The second one contains
new files that should be used in the subsequent search. After adding new files to the list, the
user must decide whether to run the search only for new files or for all files in the list. The
first case is equivalent to merging old set of terms with those extracted from new files (see the
Merge... command described in Section 6.7). Removing any file from the old list causes that
the extraction will be performed from scratch using all files from the list.

25

Figure 18: Selected Files

The Corpus Name field is filled up automatically but can be changed by the user at any
time. For the newly created set of terms, this field becomes a part of the default file name for
saving search results.

In case at least one of the selected files requires tagging, we can decide (Reuse already
tagged text files) whether the program should save the tagged files so that they can be
reused in the future. Saving tagged files speeds up the terms extraction process significantly.
The tagged file is stored in the same directory as the source file under the source file name
with the ’.tgt’ extension appended.

From the Search menu we can also set up various options used in the process of extraction.
Choosing the Preferences... command will display the Options dialog, where the majority of
search options can be selected. To conform to the look and feel of Mac OS, the Preferences...
command has been moved to the TermoPL menu placed next to the Apple menu.

There are three options that can be altered directly from the Search menu. We can in-
struct the program to calculate base forms of the extracted terms (the Calculate Base Forms
command). This menu item is available only when the built-in tagset is in use (see page 20).

The user may wish to collect all forms of extracted terms (the Collect All Analysed
Forms of Terms command) and/or all sentences containing them (the Index Sentences with
Extracted Terms command).

6.9 The View Menu

With this menu we can access auxiliary information about a selected term in the main window.
The user may wish to check forms of the selected term as they appear in the analysed corpus
(the Forms of Selected Term command), view sentences from the corpus containing that
term (the Sentences with Selected Term command), or view groups of terms associated
with the selected term (the Related Term Groups command). As it is explained in Section
6.8, To access this information it is necessary to instruct the program to collect it.

The View menu also allows to change the size of the application font (the Increase Font
and Decrease Font commands).

26

6.10 The Window Menu

While working with TermoPL, many windows may be open at one time. The Window menu
helps tidying up window clutter that can easily occur when several sets of terms are processed
simultaneously.

With Show One Document command we can display only windows for the currently analysed
set of terms. In this case, all windows associated with other documents are hidden. The Show
All Documents command will display all windows of all open documents again.

The Document Switch List contains a list of opened term sets and allows you to select
the one you want to view. In case when only one document is allowed to display its contents,
selecting a document from this list shows all its open windows and hides the currently analysed
document. Otherwise, all windows of the selected document are placed in front of all other
windows.

The Cascade command arranges all opened TermoPL windows one over another such that
for all covered windows only the title bars are visible.

The Tile command organises all open TermoPL windows so that they do not overlap, if
possible. It is most useful when only a few windows are opened and each of them takes up a
reasonable screen area.

The rest of the menu items refer to open windows of the currently analysed set of terms.
Selecting such an item displays the corresponding window in front of other windows.

6.11 The Help Menu

This provides access to general information about the TermoPL software (the About TermoPL
command) as well as to the user manual (the User Manual command). On Mac OS X, the
command About TermoPL is moved to the TermoPL menu located next to the Apple menu.

7 Batch processing

TermoPL can be run in a batch mode. To invoke the program in a batch mode the user should
enter the following command:
> java [JVM options] -jar TermoPL.jar [program options] file...
submitting at least one file to be processed or specifying any of the program’s options.
For Unix, use the following command:
> java -Djava.library.path=/usr/lib/jni/ -jar TermoPL.jar [program options] file...
For some reasons, invoking the program under Windows sometimes requires the -Djava.library.path
option.
> java -Djava.library.path=. -jar TermoPL.jar [program options] file...

We can submit two types of files for batch processing: those that will be searched for
new terms, and those that contain already extracted lists of terms (.trm files). TermoPL will
first merge lists of terms from .trm files and then modify the resulting list with new terms
extracted from remaining input files. If any .trm file is specified as input, all options listed
in the argument list and .conf file will be ignored. In this case the program will take settings
saved in the first .trm file listed in the argument list.

A configuration file may contain any of the above options except -conf. Options declared
in a command line supersede those defined in a configuration file. If no configuration file
is specified, the program checks whether the default configuration file termopl_conf.txt is
available in a directory where TermoPL is installed.

27

option argumant(s) and meaning
-conf configuration file (this option cannot be used in a configuration file)
-wrk workspace
-wdn WordNet .xml file
-in input file(s) (this option cannot be used in a command line)
-out binary file with extracted terms
-exp UTF-8 encoded text file with extracted terms
-expf UTF-8 encoded text file with all forms of extracted terms; option -nf will be

ignored
-expg XML file
-exps UTF-8 encoded text file with sentences containing extracted terms; option

-indx will be switched on
-comp file with contrastive set of terms
-sw file with stop words
-SW use default set of stop words (termopl_sw.txt)
-cp file containing compound prepositions
-CP use default set of compound prepositions (termopl_cp.txt)
-ct file with common terms
-CT use default set of common terms (termopl_ct.txt)
-grammar file with a user-defined grammar
-tagset file with a user-defined tagset
-python path to the Python interpreter with the stanza package installed
-lang ISO 639-1 Code (default is pl)
-method ud – Universal Dependencies, gt – Grammar Templates
-det include, exclude, article
-detr (default is 20)
-mw save multi-word terms only
-tr the number of top-ranked terms to be saved
-sf use simplified forms
-nf do not collect all forms of terms
-indx index sentences with extracted terms
-sort sort table of results by a selected column in ascending order; select one of the

following columns: rank, term, cvalue, comp, length, freq_s, freq_in, or
context

-SORT sort table of results by a selected column in descending order; select one of
the following columns: rank, term, cvalue, comp, length, freq_s, freq_in,
or context

-srch NPMI methods: npmi1, npmi2 or npmi3; nonpmi1 – find all term candidates;
nonpmi2 – find term candidates by trimming phrases from left to right;

-cntx context counting method; 1, 2 or 3 – use one of the context counting methods
-cc corpora comparing; no – do not perform any comparisons, or use one of the

following methods: ll, tfitf, csmv or tw
-pf the number defining the preference factor used by the third NPMI method
-frq use frequencies instead of C-values while comparing corpora
-freq consider terms with a frequency greater than the given number while comparing

corpora
-cval consider terms with a C-value greater than the given number while comparing

corpora

28

continued...
option argumant(s) and meaning
-save fields to export: #, rank, sf (term’s simplified form), bf (term’s base form),

cvalue, comp, length, freq_s, freq_in, context

We can submit two types of files for batch processing: those that will be searched for
new terms, and those that contain already extracted lists of terms (.trm files). TermoPL will
first merge lists of terms from .trm files and then modify the resulting list with new terms
extracted from remaining input files. If any .trm file is specified as input, all options listed
in the argument list and .conf file will be ignored. In this case the program will take settings
saved in the first .trm file listed in the argument list.

A configuration file may contain any of the above options except -conf. Options declared
in a command line supersede those defined in a configuration file. If no configuration file
is specified, the program checks whether the default configuration file termopl_conf.txt is
available in a directory where TermoPL is installed.

Using the options -SW, -CP and -CT requires appropriate default sets of filters to be placed
in a directory where the program TermoPL itself is installed.

Invoking the program without any program option and an empty file list:

> java [JVM options] -jar TermoPL.jar

causes the program to run in the interactive mode.

8 Requirements

TermoPL is written in Java programming language and therefore requires Java Runtime Envi-
ronment5(version 8 or later) to be installed on a target machine (Windows, Linux or Mac OS
X). Since TermoPL uses Morfeusz 2.06 to generate base forms of terms and produce simplified
forms for the list of common terms, all libraries of Morfeusz 2.0 have to be installed, too. As
long as the user does not need to work on base forms, Morfeusz 2.0 libraries are not required.

To enable the tgging/parsing of plain text files one has to install the Python interpreter7.
A script written in Python that creates CoNLLu files was tested using Python version 3.11.5.
After installing Python, install the stanza module by running the following command:

> pip install stanza.

The program is distributed as an executable jar file, so it can be started by double-clicking
on its icon.

The program requires about 1GB of RAM to process corpora of approximate size of 500 000
tokens. For considerably bigger data, one should reserve more memory invoking the program
with -Xmx and -Xms Java options, e.g.:

> java -Xmx5G -Xms4G -jar TermoPL.jar,

which reserves minimum 4GB and up to 5GB of memory for the program to run.
The Python script that converts the files to CoNLLu format requires an additional approx-

imately 1 GB of RAM.
5Java Runtime Environment can be downoaded from https://www.java.com/en/download/
6Morfeusz 2.0 is available on http://sgjp.pl/morfeusz/dopobrania.html
7Python interpreter can be downloaded from https://www.python.org/downloads/

29

References

[1] Francesca Bonin, Felice Dell’Orletta, Simonetta Montemagni, and Giulia Venturi. A
contrastive approach to multi-word extraction from domain-specific corpora. In Nicoletta
Calzolari, Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios Piperidis,
Mike Rosner, and Daniel Tapias, editors, Proceedings of the International Conference
on Language Resources and Evaluation, LREC 2010, 17-23 May 2010, Valletta, Malta.
European Language Resources Association, 2010.

[2] Gerlof Bouma. Normalized (Pointwise) Mutual Information in Collocation Extraction.
In Proceedings of the Biennial GSCL Conference 2009, pages 31–40, Tübingen, 2009.
Gesellschaft für Sprachtechnologie & Computerlinguistik.

[3] A. Dziob, M. Piasecki, and E. Rudnicka. plwordnet 4.1–a linguistically motivated, corpus-
based bilingual resource. In C. Fellbaum, P. Vossen, E. Rudnicka, M. Maziarz, and
M. Piasecki, editors, Proceedings of the 10th Global WordNet Conference: July 23-27,
2019, Wroclaw (Poland), pages 353–362. Oficyna Wydawnicza Politechniki Wrocławskiej,
Wrocław, 2019.

[4] Katerina Frantzi, Sophia Ananiadou, and Hideki Mima. Automatic Recognition of Multi-
Word Terms: the C-value/NC-value Method. Int. Journal on Digital Libraries, 3:115–130,
2000.

[5] Nancy Ide, Patrice Bonhomme, and Laurent Romary. XCES: An XML-based encoding
standard for linguistic corpora. In M. Gavrilidou, G. Carayannis, S. Markantonatou,
S. Piperidis, and G. Stainhauer, editors, Proceedings of the Second International Con-
ference on Language Resources and Evaluation (LREC‘00), Athens, Greece, May 2000.
European Language Resources Association (ELRA).

[6] Małgorzata Marciniak and Agnieszka Mykowiecka. NPMI driven recognition of nested
terms. In Proceedings of the 4th International Workshop on Computational Terminology
(Computerm), pages 33–41. Association for Computational Linguistics and Dublin City
University, 2014.

[7] Małgorzata Marciniak, Agnieszka Mykowiecka, and Piotr Rychlik. Termopl - a flexible tool
for terminology extraction. In Nicoletta Calzolari (Conference Chair), Khalid Choukri,
Thierry Declerck, Marko Grobelnik, Bente Maegaard, Joseph Mariani, Asuncion Moreno,
Jan Odijk, and Stelios Piperidis, editors, Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation (LREC 2016), Portorož, Slovenia, may 2016.
European Language Resources Association (ELRA).

[8] Małgorzata Marciniak, Piotr Rychlik, and Agnieszka Mykowiecka. TermoUD – a language-
independent terminology extraction tool. In Proceedings of the 17th Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics: System Demonstrations,
pages 178–186, Dubrovnik, Croatia, 2023. Association for Computational Linguistics.

[9] Roberto Navigli and Paola Velardi. Learning domain ontologies from document ware-
houses and dedicated web sites. Computational Linguistics, 30(2):151–179, 2004.

[10] Adam Przepiórkowski, Mirosław Bańko, R. L. Górski, and Barbara Lewandowska-
Tomaszczyk, editors. Narodowy Korpus Języka Polskiego. Wydawnictwo Naukowe PWN,
Warszawa, 2012.

30

[11] Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D. Manning. Stanza:
A Python natural language processing toolkit for many human languages. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, 2020.

[12] Paul Rayson and Roger Garside. Comparing corpora using frequency profiling. In Pro-
ceedings of the Workshop on Comparing Corpora - Volume 9, WCC ’00, pages 1—-6,
2000.

[13] Piotr Rychlik, Małgorzata Marciniak, and Agnieszka Mykowiecka. TermoPL: A tool for
extracting and clustering domain related terms. In Proceedings of the 22nd ACM/IEEE
Joint Conference on Digital Libraries, pages 1–4, New York, NY, USA, 2022. Association
for Computing Machinery.

[14] Marcin Woliński. Morfeusz reloaded. In Nicoletta Calzolari, Khalid Choukri, Thierry De-
clerck, Hrafn Loftsson, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk,
and Stelios Piperidis, editors, Proceedings of the Ninth International Conference on Lan-
guage Resources and Evaluation, LREC 2014, pages 1106–1111, Reykjavík, Iceland, 2014.
ELRA.

31

