
TermoPL∗ 5.6
user manual

Institute of Computer Science
Polish Academy of Sciences

23.08.2021

∗TermoPL is co-funded by CLARIN-PL

1

1 Introduction

TermoPL is a tool created to extract terminology from domain corpora in Polish. The program
extracts noun phrases, term candidates, with the help of a simple grammar that can be adapted
for user’s needs. It applies the C-value method to rank term candidates being either the longest
identified nominal phrases or their nested subphrases. The method operates on simplified
base forms in order to unify morphological variants of terms and to recognise their contexts.
We support the recognition of nested terms by word connection strength which allows us to
eliminate truncated phrases from the top part of the term list. The program has an option
to convert simplified forms of phrases into correct phrases in the nominal case. TermoPL
accepts as input morphologically annotated and disambiguated domain texts and creates a
list of terms, the top part of which comprises domain terminology. It can also compare two
candidate term lists using four different coefficients showing asymmetry of term occurrences
in this data.

You can learn more about TermoPL from [5].

2 How it works?

TermoPL searches a given set of texts and creates a list of forms that might be considered
as candidates for terms characteristic for a chosen domain. The program accepts an UTF8
encoded input with morphosyntactic analysis in various formats such as NKJP [7], XCES, and
the simple, flat format in which each token is represented by a single line of text consisting
of an orthographic form (as it appears in a processed document), its lemma and a tag. The
following two lines are acceptable input describing the token in flat format files:

form<TAB>#lemma<TAB>#tag#
form<TAB>lemma<TAB>tag

Sentences are separated by an empty line or one of the lines below:

&<TAB>#&<TAB>#&#
&<TAB>&<TAB>&

The input file of the flat format may contain more than one document from the analysed
corpus, which are separated by a line of text starting with %%. Separating documents is useful
if we want to compare corpora using the term weight method described in Section 3.6.

Starting from version 5.1, the program also accepts files of CoNLL-U format1, which is
frequently used by several dependency parsers.

For Polish it is also possible to use untagged input files. In this case, the files are first
processed by the Concraft [9] tagger.

TermoPL reads input sentence by sentence and identifies the maximal sequences of consec-
utive tokens that are recognised, either by the standard built-in grammar presented in Figure
1, or a custom grammar provided by the user. In the built-in grammar, NAP and NAP_GEN
both denote noun phrases, with the proviso that NAP_GEN denotes noun phrases in the
genitive case. It is assumed, of course, that tokens matched by NAP (and NAP_GEN) must
agree in number, case and gender. In other words, the program first extracts the longest
(maximal) phrases consisting of a noun phrase, possibly modified by other noun phrases in
the genitive case. Then, it splits them into smaller parts (nested phrases) that still conform
to the given grammar. It provides four methods for splitting maximal phrases. The first one

1https://universaldependencies.org/format.html

1

NPP : $NAP NAP_GEN ∗;

NAP [agreement] : AP∗ N AP∗;

NAP_GEN [case = gen] : NAP ;

AP : ADJ | ADJA DASH ADJ | PPAS ;
N [pos = subst , ger];

ADJ [pos = adj];

ADJA[pos = adja];

PPAS [pos = ppas];

DASH [form = "-"];

Figure 1: The built-in grammar.

searches for all subphrases that satisfy the given grammar. This method produces consider-
ably more term candidates than the remaining three methods, since it does not care if the
resulting terms are semantically odd, truncated phrases. For example the phrase nominalna
roczna stopa procentowa ’nominal annual interest rate’ contains a grammatically acceptable
subphrase roczna stopa which looks odd and should not be accepted as a term. The rest of the
phrase splitting methods try to eliminate such phrases using NPMI (see Section 3.2) driven
recognition of nested phrases introduced in [4]. These methods try to split a phrase at the
weakest connection point expressed by NPMI coefficient. The first method always divides the
phrase at the weakest connection, regardless whether the resulting subphrases conform to the
given grammar. The second one tries to divide the phrase into subphrases so as to at least one
of them satisfies the grammar rules. The third method is very similar to the second one except
that it prefers cases when two of the resulting subphases satisfy the grammar. This preference
is expressed by same factor. By default, TermoPL sets this factor to 120%.

All sequences recognised in this way are converted into simplified forms, in which all words
are lemmatized and stored in a set representing term candidates. Simplified forms enable
the program to recognise all morphological forms of a phrase as corresponding to one term.
Morphological forms of phrases may significantly differ for languages with reach inflection
such as Polish. For example, katedra romańska ‘romanesque cathedral’ whose simplified form
is katedra romański has 14 forms (e.g. katedrze romańskiej loc,sg, katedrom romańskimdat,pl)
depending on the case and number. Two of these forms are homomorphic with the other ones.

The number of considered term candidates can be reduced by the user, if he/she submits a
list of lemmas of stop words. If a term candidate contains any of the stop words, it is eliminated.
For example, ta katedra romańska ‘this romanesque cathedral’ should be excluded from the
list of term candidates for obvious reasons, although it conforms to the grammar used by
the program. Similar problems produce compound prepositions. For example, the compound
preposition z naszego punktu widzenia ‘from our point of view’ contains the grammatically
valid term candidate nasz punkt widzenia ‘our point of view’, which should not be considered
as a term. One can further shrink the list of considered terms, if he/she specifies the list of
general or out-of-domain terms.

Two lists are associated with each element of the set — the optional one containing all
different orthographic forms of the term, and the other containing all distinct contexts in which
these forms appear. The second list is automatically deleted after C-values are calculated. The
first list, although it is optional, may play an important role when the base forms of terms are
generated. This functionality, however, can be used only if the standard tagset is selected (see

2

4 and 12).
Additionally, for each term, two values are computed: the total number of term occurrences

in the corpus and the number of occurrences within other, longer terms. Having all this infor-
mation, the program calculates the C-value for each term and sorts the list of term candidates
from the highest to the lowest C-value. Finally, if the user wishes to do so, simplified forms
are replaced by base forms of the terms.

To obtain base forms a token or a group of tokens matched with a symbol marked with the
$ character are replaced by their nominal forms. All other tokens are left unmodified. In the
grammar given above, the only symbol marked with $ is NAP . Therefore all NAP phrases are
transformed into their nominal forms, whereas NAP_GEN phrases are left as they appear.

In this process, the new version of Morfeusz [10, the morphosyntactic analyser and generator
for Polish] is used. A base form of a term is usually singular, unless all phrases (maximal or
nested) corresponding to this term are plural noun phrases. Letter case used in base forms is
determined by orthographic forms associated with each term. If a particular word appears in
upper case in all phrases, it remains in upper case in the base form. Otherwise, it is converted
to lower case. In a case where the user decided not to collect all orthographic forms, the process
of converting simplified forms to base forms relies solely on Morfeusz.

A generated list can be truncated by the user to include only multi-word terms and/or
some specified number of top ranked term candidates.

The results of term extraction can be saved to a file, which in turn may be used to make com-
parisons with other corpora. The program calculates a selected measure for corpora similarity
(see Sections 3.3–3.6) and marks out listed terms with different shades of colours according to
their representativeness in analysed corpora.

The program can be used in two modes: batch and interactive. For the interactive mode
a graphical user interface is provided.

3 Formulas used in calculations

Let us first introduce some useful notations:

A domain corpus
B contrastive corpus
AB merged corpora A and B
T (X) set of terms of a corpus X
D(X) set of documents in a corpus X
t term
d document

fX(t) frequency of a term t in a corpus X
ft(d) frequency of a term t in a document d
NY

X size of a corpus X with respect to T (Y), i.e.
∑

t∈T (Y) fX(t)

SX size of a corpus X, i.e. NX
X

3.1 C-value

TermoPL ranks term candidates using modified version of C-value described in [3]. For a given
phrase p, its C-value is defined as follows:

C-value(p) =

 l(p)×
(
f(p)− 1

|LP |
∑

lp∈LP
f(lp)

)
, if |LP | > 0,

l(p)× f(p), if |LP | = 0,

3

where f(p) is the number of occurrences of a phrase p, LP is a set of different phrases containing
p, |LP | is the number of phrases in LP and l is a function which increases weight for longer
phrases. It is equal to the logarithm (log2) of phrase length for multi-word expressions and a
constant (TermoPL uses 0.1) for one-word terms.

What it follows from the above equation, the chance that a given phrase can be assumed
as a domain term increases with the number of contexts in which it occurs. What is meant by
a context and hence, what the term "different phrases" means in the definition of C-value will
be explained in Section 6.4 (page 14).

3.2 Normalised pointwise mutual information

In order to determine the connection strength for a pair of words, TermoPL counts normalised
pointwise mutual information (NPMI) proposed by [2] for all lemmatized bigrams in a consid-
ered corpus.

NPMI (x, y) =

(
ln

p(x, y)

p(x)p(y)

)/
− ln p(x, y),

where p(x, y) is a probability of the ’x y’ bigram in the considered corpus, and p(x), p(y) are
probabilities of ’x’ and ’y’ unigrams, respectively.

3.3 Corpora-comparing log-likelihood

The Corpora-comparing log-likelihood (LL) coefficient [8] points out whether or not a given
term occurs significantly more frequent in one of two tested corpora. It is calculated in the
following way:

LL(t) = 2

(
fA(t) log

(fA(t)
EA(t)

)
+ fB(t) log

(fB(t)
EB(t)

))
,

where EX = SX
fA(t)+fB(t)

SA+SB
. In calculations we can use C-values instead of frequencies. The

size SX of a corpus is measured then by the sum of C-values of all its terms.

3.4 Term frequency inverse term frequency

Term frequency inverse term frequency (TFITF) method [1] combines the frequency of a term
t in the domain corpus with inverse term frequency in both domain and contrastive corpora.

TFITF (t) = log(fA(t)) log

(
NA

AB

fAB(t)

)
.

We can choose to use C-values instead of frequencies in all calculations, just as in case of LL
coefficient.

3.5 Contrastive selection of multi-word terms

Contractive selection of multi-word terms (CSmw) [1] is defined by the following equation:

CSmw(t) = log
(
log(fA(t))×NA

B ×
fA(t)

fB(t)

)
CSmw coefficient can also be calculated with C-values.

4

3.6 Term weight

Term weight (TW) [6] depends on the domain relevance (DR) of a term t and its domain
consensus (DC) expressed by the entropy of the distribution of t in the domain corpus A.

TW (t) = αDR(t) + βDC ∗(t),

where α and β are numbers from (0, 1), and DR and DC are defined as follows:

DR(t) =
PA(t)

max (PA(t), PB(t))
,

PX(t) =
fX(t)

SX
,

DC (t) = −
∑

d∈D(A)

(
pt(d) log(pt(d))

)
,

DC ∗(t) =
1

L
DC (t),

L = max
t∈T (A)

DC (t),

pt(d) =
ft(d)

SA
.

Unlike the other three methods presented above, TW works on frequencies only. Default
values for α and β are 0.9 and 0.3, respectively.

4 Customising the tagset

TermoPL allows the use of alternative tagsets to define grammars.
The tag consists of a list of morphosyntactic markers. The first element of this list is

always corresponds to the grammatical class (pos) of the segment. It is followed by markers
defining grammatical categories that characterise the selected segment.

pos : cat0 : ... : catn, n ≥ 0.

Sometimes the tags are reduced to just a part of speech. Part-of-speech tags are used in
the Penn Treebank Project2, for example. In order to use this kind of tagset, one has to put
the following line as the only line in the tagset structure definition file:

TAG = pos.

By default, list items that make up a tag are separated by a colon, but the user can change
this using DELIMITER directive in a tagset structure definition file. For example, if we decide
to separate items with comma, we have to put the following line as the first line in a tagset
structure definition file:

DELIMITER = ”, ”.

2https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

5

Sometimes the tags are fixed-length strings where each position encodes one morpholog-
ical category with one character. Such positional tags are used, for example, by the Prague
Dependency Treebank 2.03. In such cases we use an empty separator:

DELIMITER = ””.

TermoPL allows you to define tagset structure by two methods. The first of them (catego-
ries by positions) requires that for a given grammar class, markers defining grammatical
categories always appear in the same order in the tag. Using this method of defining a tagset,
we do not need to specify what values the markers corresponding to particular grammatical
categories can take. The program will not check whether a given value actually corresponds
to a given category. The user must define the set of grammatical categories of the tagset and
the order of occurrence of markers corresponding to the categories in the tag.

<categories by positions>
subst: number, case, gender, sgender
adj: number, case, gender, degree
...

It may happen that a certain grammatical category does not apply to the description
of the segment, although in the general case it characterises the class to which the segment
belongs. Such a category is, among others, sgender for class subst in the default tagset used
by TermoPL. The marker (let’s call it cati) corresponding to this category can be omitted
from the tag, but only if it appears at the end. Otherwise, it can be substituted by some place
holder or an empty space must be left at this position in the tag, where, according to the class
definition, this marker should appear:

pos : cat0 : . . . : cati−1 : : cati+1 : . . . : catn.

For positional tags such as those used by the Prague Dependency Treebank, the user must
specify grammatical categories and their order in the tag.

<categories by positions>
cat0, cat1, . . . , catn

The second method (categories by values) assumes that the tag values corresponding
to different grammatical categories are different. The grammatical category will be identified
in this case based on the marker value. When defining grammatical categories, the user must
specify the values of the corresponding markers.

<categories by values>
number: sg, pl
case: nom, gen, dat, acc, inst, loc, voc
gender: m1, m2, m3, f, n
sgender: ncol, col
degree: pos, com, sup
...

The default TermoPL tagset is defined by the categories by values method.
The user can define composite categories whose values will be sets containing the values of

other basic categories defined in the tagset.
3http://ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/m-layer/html/ch02.html

6

<definitions>
agreement = number, case, gender
...

TermoPL is using the following default tagset:

DELIMITER = ":"
<categories by values>

number: sg, pl
case: nom, gen, dat, acc, inst, loc, voc
gender: m1, m2, m3, f, n
sgender: pt, ncol, col
person: pri, sec, ter
degree: pos, com, sup
aspect: imperf, perf
negation: aff, neg
accent: akc, nakc
pprep: praep, npraep
accom: congr, rec
aggl: nagl, agl
vocality: wok, nwok
fstop: pun, npun

<definitions>
agreement = number, case, gender

class meaning (in Polish) categories
fin forma nieprzeszła number:person:aspect
bedzie forma przyszła czasownika BYĆ number:person:aspect
aglt aglutynant czasownika BYĆ number:person:aspect:vocality
praet pseudoimiesłów number:person:gender:aspect:aggl
impt rozkaźnik number:person:aspect
imps bezosobnik aspect
inf bezokolicznik aspect
pcon imiesłów przysłówkowy współczesny aspect
pant imiesłów przysłówkowy uprzedni aspect
ger odsłownik number:case:gender:aspect:negation
pact imiesłów przymiotnikowy czynny number:case:gender:aspect:negation
ppas imiesłów przymiotnikowy bierny number:case:gender:aspect:negation
winien czasownik typu WINIEN number:gender:aspect
pred predykatyw —
subst rzeczownik number:case:gender:sgender
depr rzeczownik – forma deprecjatywna number:case:gender
adj przymiotnik number:case:gender:degree
adja przymiotnik przyprzymiotnikowy —
adjp forma poprzyimkowa case
adjc przymiotnik predykatywny —
adv przysłówek degree
num liczebnik number:case:gender:accom:sgender
ppron12 zaimek nietrzecioosobowy number:case:gender:person:accent

7

ppron3 zaimek trzecioosobowy number:case:gender:person:accent:pprep
siebie zaimek SIEBIE case
prep przyimek case:vocality
conj spójnik współrzędny —
comp spójnik podrzędny —
brev skrót fstop
interj wykrzyknik —
part partykuła vocality
frag człon frazeologizmu —
interp interpunkcja —
ign forma nierozpoznana —

Table 2: Grammatical classes in the default tagset

category meaning (in Polish) values
number liczba sg, pl
case przypadek nom, gen, dat, acc, inst, loc, voc
gender rodzaj m1, m2, m3, f, n
sgender przyrodzaj pt, ncol, col
person osoba pri, sec, ter
degree stopień pos, com, sup
aspect aspekt imperf, perf
negation zanegowanie aff, neg
accent akcentowość akc, nakc
pprep poprzyimkowość praep, npraep
accom akomodacyjność congr, rec
aggl aglutynacyjność nagl, agl
vocality wokaliczność wok, nwok
fstop kropkowalność pun, npun

Table 3: Grammatical categories in the default tagset

5 Customising the grammar

As it was mentioned, the built-in grammar can be replaced by some user-defined grammar. To
specify a grammar one has to define production rules and tests that have to be performed on
tokens or sequences of tokens during the matching process. Rules have the following form:

<symbol> ["[" <test-list> "]"] ":" <regular expression over symbols> ";",
<symbol> "[" <test-list> "];".

The left-hand side of a rule consists of only one nonterminal symbol. The right-hand side is
a regular expression over the set of symbols. Regular expressions allowed by the program may
contain alternatives separated by ’|’, and quantifiers: ’?’, ’*’ and ’+’, which indicate zero or
one, zero or more and one or more occurrences of the preceding symbol, respectively. No loops
are allowed, which means that the rewriting process cannot yield to symbol that appeared on
the left hand-side of an applied rule.

8

For each symbol it is possible to specify <test-list>, i.e. a test or a series of tests performed
during the matching process.

<test> ["," <test>]

Tests can be defined on the left-hand side of a rule or in separate statements. Tests,
separated with semicolons, are placed in square brackets just after a symbol to which they
relate.

A test can be an agreement checking function that refers to some grammatical category.
For a given sequence of tokens, it returns true if and only if all tokens sharing the grammatical
category being tested are assigned the same value for this category. A test can also be an
expression returning boolean value:

<selector> <op> <string> ["," <string>],

where selector is a function defined on tokens and lists of tokens and returning a string value,
and op is one of the following operators: ’=’, ’! =’, ’∼’ and ’! ∼’. The first two operators serve
to compare strings if they are equal (’=’) or not (’! =’). With the remaining operators we can
check whether a string returned by a selector matches (’∼’) or not (’! ∼’) a Java-style regular
expression. If there are more strings on the right side of a positive operator (’=’ or ’∼’), a test
succeeds whenever it succeeds for at least one of these strings. In case of negative operators
(’! =’ or ’! ∼’) a test succeeds if it succeeds for all given strings.

Tests can be applied to single tokens or sequences of tokens. In the built-in grammar
presented on page 2, N [pos = subst , ger] means that a token matched with symbol N must
be a substantive or a gerund, whereas NAP [agreement] means that a sequence of tokens
matched with NAP must agree in number, case and gender, since agreement is a composite
category consisting of categories number , case and gender defined in the tagset (see page 7).
The expression NAP [agreement] can be replaced by NAP [number ; case; gender]. Note that a
sequence of tokens matched with NAP may contain tokens for which agreement test is not
applicable, e.g. ‘-’. In such cases testing is performed only on those tokens for which it makes
sense.

ThermoPL provides four built-in selectors whose names are self-explaining: form, lemma,
tag and pos. The other selectors correspond to the grammatical categories defined in the tagset.

6 Graphical user interface

TermoPL is a multi-document application since version 4. The user may open and analyse
several set of terms simultaneously. The graphical user interface of the program consists of
several windows, dialog boxes and menus. In case of Windows and Unix operating systems,
all these graphical elements are gathered in one virtual desktop window.

The user can navigate through all functionality of the program using menus. They are
located either on the top of the screen (Mac OSX), or on the top of the virtual desktop
window (Windows, Linux).

6.1 The Terms Window

When the program finishes the extraction process it displays a table of term candidates as
it is shown in Figure 3. For every term the table shows: term’s position on the list (#),
its rank (Rank), base/simplified form (Term), C-value (C-value), length (Length), number of
occurrences (Freq_s), number of occurrences within the context of another terms (Freq_in)
and the number of these contexts (Context #). The table can be sorted by any (except the

9

Figure 2: The virtual desktop for TermoPL.

first) column by clicking on its header. Columns may be sorted in ascending () or descending
() order.

As it was mentioned before, the list of displayed terms can be truncated. The user may
wish to view only multi-word terms or only those that are top-ranked. If the list of displayed
terms is reduced to 1000 top-ranked terms, it might actually contain more entries as some of
the terms may have assigned the same rank. The user may also limit the displayed list of terms
by filtering those that contain a specified sequence of characters. Clicking the search icon ()
reveals the available term filtering options (Figure 4). The user has three options to control
the filtering process: he/she can choose a case-sensitive search, select whole-word strings, or
define a java-style regular expression.

Truncation always starts from collecting all items that contain a specified sequence of
characters, then all phrases with a length outside the specified range are removed, and finally
the highest ranked terms are selected.

In case when the user decided to compare the extracted set of terms with other, previously
extracted set of terms, the Terms window looks like on Figure 5.

In the window showing comparison results, the value of the chosen comparing coefficient is
displayed just next to the right of the C-value. In Figure 5, log-likelihood values are shown.

The colours of the table’s rows correspond to a term representativeness. All shades of
yellow point out that a corresponding term is more representative for the domain corpus.
Green colours show the opposite. The more saturated colour, the more representative a given
term is for one of two corpora.

The Terms window is the main window for a document describing an extracted set of terms.
Closing the main window will automatically close all windows associated with one document,
currently analysed set of terms.

10

Figure 3: The main window showing search results.

Figure 4: Term filtering options.

11

Figure 5: Results of two corpora comparison.

Figure 6: The meaning of table’s colours.

12

6.2 The Forms Window

One may choose to collect all forms of extracted terms as they appear in an analysed corpus
(see Section 6.7). In this case, selecting a row in the table of terms allows to display all forms
of the corresponding term (see Section 6.8). For each form, the number of its occurrences as
an independent and nested phrase is given in square brackets.

Figure 7: The window presenting all forms of a given term found in an analysed corpus.

6.3 The Sentences Window

If the user decided to index all sentences with extracted terms (see Section 6.7), selecting a
row in the table allows to display all sentences in which the selected term appears (see Section
6.8).

Figure 8: The window presenting all sentences containing a given term found in an analysed
corpus.

13

6.4 The Options Dialog

The user can change the behaviour of the program by setting different options. In the inter-
active mode, the initial values for the options are loaded from the file .TermoPL-5, which is
created by the program in the user’s home directory when it is run for the first time. This file
is modified whenever the user changes some of the options and when the program terminates.

The program keeps several copies of options set. The first copy, let’s call it the master
copy, is created immediately when the program starts. This copy is then used whenever the
user chooses to create a new set of terms. The copy of the master copy is associated with
the newly created set of terms and will be used only with this set. Modifying the options for
the currently used set of terms will modify only the options associated with this set and the
master copy. Options associated with other sets of terms will remain unaltered.

Figure 9: Optios – Filters – Stop Words.

The Options dialog consists of seven panels. In the first three panels we can define lists of
filters: stop words (below), compound prepositions (page 15) and common terms (page 16).

14

These lists can be loaded [Load...] from UTF-8 encoded text files replacing existing
lists, or loaded and merged (merge) with existing lists. Each list can be modified by the user.
Double-clicking an item of a list calls a text editor. Clicking the buttons (+) and (–), adds
a new entry or removes the selected item(s) from the list, respectively. Modified list can be
saved [Save...] to a file.

The list of stop words consists of lemmatized forms. Each line of text in a file with stop
words contains only one word. By default the list of stop words is empty. The default set of
stop words can be loaded from termopl_sw.txt.

Figure 10: Options – Filters – Compound Prepositions.

The list of compound prepositions looks very much the same as the list of stop words.
However, each line of a compound prepositions list defines a pattern. Each pattern contains
obligatory and/or optional elements. For example, the pattern ’na [sam] koniec’ has two
obligatory elements ’na’ and ’koniec’, and only one optional element ’sam’. It will match
expressions like ’na koniec’ and ’na sam koniec’. Some of the elements define an alternative
of words. For example, the pattern ’na [cały | sam | ten] czas’ contains optional element
being an alternative of three words: cały, sam and ten. It means that the whole pattern will

15

match expressions like ’na cały czas’, ’na sam czas’ and ’na ten czas’. If the user decides to
make an alternative obligatory, it must put it in parenthesis ’(...)’ instead of brackets. The
symbol #adjp frequently used in patterns matches a single adjective.

By default the list of compound prepositions is empty. The default set of compound
prepositions can be loaded from termopl_cp.txt.

Figure 11: Optios – Filters – Common Terms.

The list of common terms is used to eliminate from the final list of extracted term candidates
those which are general or out-of-domain. The user may choose to edit their simplified or base
forms by selecting or deselecting the Show simplified forms check box. For new base forms,
simplified forms are automatically generated. If we add a simplified form of a term, its base
form becomes the same string as the simplified form.

Each line of a file with common terms contains a simplified form of a term and, optionally,
its base form put in brackets.

By default the list of compound prepositions is empty. The default set of common terms
can be loaded from termopl_ct.txt.

Working with base forms requires the Morfeusz 2.0 libraries to be installed.

16

Figure 12: Options – Grammar.

Using this panel we can decide which grammar should be used by the program. We can
select alternative grammar by clicking on [Change grammar...] button and selecting one of
the grammar files.

By choosing the custom grammar we are allowed to use an alternative tagset. This tagset
can be changed by clicking on [Change tagset...] button and selecting one of the tagset
files.

Generating base forms of the extracted terms is possible only if the built-in tagset is selected.
Grammar files as well as tagset files should be UTF-8 encoded text files.

17

Figure 13: Options – Search.

The user should use this panel to set up the term extraction and context counting methods.
The user has three options when he/she chooses to use NPMI driven method to search

for nested phrases. The first one always divides the phrase at the weakest connection point
indicated by the lowest NPMI value and continues this process for the resulting subphrases
even if they do not conform to the grammar rules. The second one is more sophisticated. It
tries to divide the phrase into subphrases so as to at least one of them safisfies the grammar
rules. It chooses the weakest possible connection point according to NPMI value to do the
split and continue this process for the resulting subphrases. If the phrase cannot be split in
such a way, the first method is used. The third method, which is the default method, also tries
to divide the phrase into subphrases so as to at least one of them safisfies the grammar rules.
However, it preferes the cases where both phrases obtained after splitting are accepted by the
given grammar. This preference is expressed by the Preference factor. If the phrase cannot
be split in such a way, the second method is applied. If the user decides not to use any of the
NPMI methods, then all possible nested phrases are checked, unless the Trim phrases from
left to right box is selected. In this case, nested phrases are generated by cutting out the
initial fragment of a maximal phrase.

18

By a context of a nested phrase we will understand a pair (L,R), where L and R are words
located just before and right after the nested phrase. In some cases L or/and R can be empty.
For example, any maximal phrase, which is not embedded in any larger acceptable phrase, has
an empty context. The question is how we will count the contexts. The first method, which is
the default method used by the program, counts different left and right contexts separately and
then takes the maximum of these two values. The second method works similarly; however,
it does not differentiate between pairs (L,R) and (R,L). The last method counts all different
pairs (L,R).

Figure 14: Options – Compare.

Using Compare panel we can set up corpora comparing methods and their parameters.
They are described in Sections 3.3 – 3.6.

19

Figure 15: Options – Export.

The user can decide which columns from the results table will be exported to a text
file. He/she can also decide whether to save all forms of terms collected by the program.
Not every file format of saved terms is acceptable for corpora comparing. The simplest one
contains exactly three fields: Term (simplified form), C-value and Freq_s. The other
acceptable formats contain all fields from which we can exclude Term (base form) and/or
LL/TFITF/CSmw/TW.

Figure 15 shows default settings for the Export panel.

6.5 Workspace

The location of all files used by TermoPL for analysis is determined relative to the selected
folder called the workspace. The user should place all analysed files in this folder. However,
they can be arranged in subfolders. By default, the program working in interractive mode
assumes that files are placed in TermoPLWorkspace folder, which is automatically created in
the user’s home directory. It is possible to define multiple workspaces and they can be changed
at any time. In batch mode, user has to define workspace explicitly. Otherwise, all input files

20

must be specified by their absolute paths.

Figure 16: Workspace window

6.6 The File Menu

The File menu contains commands that allow to create, open, close, save, export and merge
sets of terms.

To create a new set of terms one should choose the New command. The user will then be
asked to select files for terms extraction.

With Open command we can choose existing set of terms to be loaded from a computer
disk for further analysis. These files have extension .trm. By opening a .trm file we restore
the list of extracted terms and all settings of the program, i.e. options and files used in the
extraction process.

The Merge... command allows to combine the currently analysed set of terms with some
other set from the disk. Merging two lists of terms is not equivalent to performing the entire
extraction procedure on the combined set of files used to generate these lists. However, the
results obtained with these two methods should not differ significantly. These differences result
from how the NPMI is calculated (see Section 3.2). In the case of merging, NPMI is calculated
separately for two sets of input files. When we perform the search on the combined set of
input files, the NPMI is calculated for this combined set. The abovementioned methods are
equivalent, if we resign from using the NPMI during extraction process.

The Open Recent submenu gives access to the recently opened set of terms.
To close the currently analysed set of terms we can use Close command. This is equivalent

to closing the main window (see Section 6.1).
The Save and Save As... commands serve to save the list of terms together with the

program’s options and files used in the extraction process. Files saved with these commands
can be further used for corpora comparing.

The Workspace command allows to change the current workspace.
The user can also export (the Export... command) the search results to UTF-8 encoded

text file. The user can decide which fields of the terms table should be saved (see page 20).
Only those terms are saved that are actually listed in the terms table. Exported search results
can be subsequently used for corpora comparison.

The user may choose to save all forms of extracted terms (the Export Forms... command)
and containing them sentences (the Export Sentences... command) to separate UTF-8
encoded text files, The user may choose to save all forms of extracted terms and containing

21

them sentences to separate UTF-8 encoded text files, provided that the appropriate information
has been collected during the search process.

On Microsoft Windows and Unix operating systems, the File menu contains the Exit com-
mand, which terminates the program. On Mac OS, the same function has the Quit command
placed in the TermoPL menu located next to the Apple menu.

6.7 The Search Menu

The basic functions of this menu are term extraction (Extract) and comparing two sets of
terms (Compare).

To perform a term extraction one has to load a corpus by selecting a file, a group of files,
or a whole directory (the Select File(s)... command).

The Select Contrastive Set of Terms command serves to select data for comparison
purposes.The same can be done with the Options dialog (see page 19).

Choosing the Select File(s) command displays a dialog (Figure 17) with which the user
can create and edit the list of files used in the extraction of terms. Clicking the buttons (+)
and (–), adds a new entry or removes the selected item(s) from the list, respectively. Files that
were deleted or moved to some other location are marked with (). Those located outside the
current workspace are marked with ().

The list is divided into two parts. The first part (highlighted in orange) contains files that
were previously used to generate the currently analyzed set of terms. The second one contains
new files that should be used in the subsequent search. After adding new files to the list, the
user must decide whether to run the search only for new files or for all files in the list. The
first case is equivalent to merging old set of terms with those extracted from new files (see the
Merge... command described in Section 6.6). Removing any file from the old list causes that
the extraction will be performed from scratch using all files from the list.

The Corpus Name field is filled up automatically but can be changed by the user at any
time. For the newly created set of terms, this field becomes a part of the default file name for
saving search results.

In case at least one of the selected files requires tagging, we can decide (Reuse already
tagged text files) whether the program should save the tagged files so that they can be
reused in the future. Saving tagged files speeds up the terms extraction process significantly.
The tagged file is stored in the same directory as the source file under the source file name
with the ’.tgt’ extension appended.

From the Search menu we can also set up various options used in the process of extraction.
Choosing the Preferences... command will display the Options dialog, where the majority of
search options can be selected. To conform to the look and feel of Mac OS, the Preferences...
command has been moved to the TermoPL menu placed next to the Apple menu.

There are three options that can be altered directly from the Search menu. We can in-
struct the program to calculate base forms of the extracted terms (the Calculate Base Forms
command). This menu item is available only when the built-in tagset is in use (see page 17).

The user may wish to collect all forms of extracted terms (the Collect All Analysed
Forms of Terms command) and/or all sentences containing them (the Index Sentences with
Extracted Terms command).

Once all necessary files are selected and all search options are set we can start the search.
The process of extraction can be cancelled at any time.

22

Figure 17: Selected Files

6.8 The View Menu

With this menu we can access auxiliary information about a selected term in the main window.
The user may wish to check forms of the selected term as they appear in the analysed corpus
(the Forms of Selected Term command), or view sentences from the corpus containing that
term (the Sentences with Selected Term command). As it is explained in Section 6.7, To
access this information it is necessary to instruct the program to collect it.

The View menu also allows to change the size of the application font (the Increase Font
and Decrease Font commands).

6.9 The Window Menu

While working with TermoPL, many windows may be open at one time. The Window menu
helps tidying up window clutter that can easily occur when several sets of terms are processed
simultaneously.

With Show One Document command we can display only windows for the currently analysed
set of terms. In this case, all windows associated with other documents are hidden. The Show
All Documents command will display all windows of all open documents again.

The Document Switch List contains a list of opened term sets and allows you to select
the one you want to view. In case when only one document is allowed to display its contents,
selecting a document from this list shows all its open windows and hides the currently analysed
document. Otherwise, all windows of the selected document are placed in front of all other
windows.

The Cascade command arranges all opened TermoPL windows one over another such that
for all covered windows only the title bars are visible.

The Tile command organises all open TermoPL windows so that they do not overlap, if
possible. It is most useful when only a few windows are opened and each of them takes up a
reasonable screen area.

The rest of the menu items refer to open windows of the currently analysed set of terms.

23

Selecting such an item displays the corresponding window in front of other windows.

6.10 The Help Menu

This provides access to general information about the TermoPL software (the About TermoPL
command) as well as to the user manual (the User Manual command). On Mac OS X, the
command About TermoPL is moved to the TermoPL menu located next to the Apple menu.

7 Batch processing

TermoPL can be run in a batch mode. To invoke the program in a batch mode the user should
enter the following command:
> java [JVM options] -jar TermoPL.jar [program options] file...
submitting at least one file to be processed or specifying any of the program’s options.
For Unix, use the following command:
> java -Djava.library.path=/usr/lib/jni/ -jar TermoPL.jar [program options] file...
For some reasons, invoking the program under Windows sometimes requires the -Djava.library.path
option.
> java -Djava.library.path=. -jar TermoPL.jar [program options] file...

option argumant(s) and meaning
-conf configuration file (this option cannot be used in a configura-

tion file)
-wrk workspace
-in input file(s) (this option cannot be used in a command line)
-out binary file with extracted terms
-exp UTF-8 encoded text file with extracted terms
-expf UTF-8 encoded text file with all forms of extracted terms;

option -nf will be ignored
-exps UTF-8 encoded text file with sentences containing extracted

terms; option -indx will be switched on
-comp file with contrastive set of terms
-sw file with stop words
-SW use default set of stop words (termopl_sw.txt)
-cp file containing compound prepositions
-CP use default set of compound prepositions (termopl_cp.txt)
-ct file with common terms
-CT use default set of common terms (termopl_ct.txt)
-grammar file with a user-defined grammar
-tagset file with a user-defined tagset
-mw save multi-word terms only
-tr the number of top-ranked terms to be saved
-sf use simplified forms
-nf do not collect all forms of terms
-indx index sentences with extracted terms
-sort sort table of results by a selected column in ascending order;

select one of the following columns: rank, term, cvalue,
comp, length, freq_s, freq_in, or context

24

-SORT sort table of results by a selected column in descending order;
select one of the following columns: rank, term, cvalue,
comp, length, freq_s, freq_in, or context

-srch NPMI methods: npmi1, npmi2 or npmi3; nonpmi1 – find all
term candidates; nonpmi2 – find term candidates by trim-
ming phrases from left to right;

-cntx context counting method; 1, 2 or 3 – use one of the context
counting methods

-cc corpora comparing; no – do not perform any comparisons,
or use one of the following methods: ll, tfitf, csmv or tw

-pf the number defining the preference factor used by the third
NPMI method

-frq use frequencies instead of C-values while comparing corpora
-freq consider terms with a frequency greater than the given num-

ber while comparing corpora
-cval consider terms with a C-value greater than the given number

while comparing corpora
-save fields to export: #, rank, sf (term’s simplified form), bf

(term’s base form), cvalue, comp, length, freq_s, freq_in,
context

We can submit two types of files for batch processing: those that will be searched for
new terms, and those that contain already extracted lists of terms (.trm files). TermoPL will
first merge lists of terms from .trm files and then modify the resulting list with new terms
extracted from remaining input files. If any .trm file is specified as input, all options listed
in the argument list and .conf file will be ignored. In this case the program will take settings
saved in the first .trm file listed in the argument list.

A configuration file may contain any of the above options except -conf. Options declared
in a command line supersede those defined in a configuration file. If no configuration file
is specified, the program checks whether the default configuration file termopl_conf.txt is
available in a directory where TermoPL is installed.

Using the options -SW, -CP and -CT requires appropriate default sets of filters to be placed
in a directory where the program TermoPL itself is installed.

Invoking the program without any program option and an empty file list:

> java [JVM options] -jar TermoPL.jar

causes the program to run in the interactive mode.

8 Requirements

TermoPL is written in Java programming language and therefore requires Java Runtime Envi-
ronment4(version 8 or later) to be installed on a target machine (Windows, Linux or Mac OS
X). Since TermoPL uses Morfeusz 2.05 to generate base forms of terms and produce simplified
forms for the list of common terms, all libraries of Morfeusz 2.0 have to be installed, too. As
long as the user does not need to work on base forms, Morfeusz 2.0 libraries are not required.

The program is distributed as an executable jar file, so it can be started by double-clicking
on its icon.

4Java Runtime Environment can be downoaded from http://www.java.com/pl/download/
5Morfeusz 2.0 is available on http://sgjp.pl/morfeusz/dopobrania.html

25

The program requires about 1GB of RAM to process corpora of approximate size of 500 000
tokens. For considerably bigger data, one should reserve more memory invoking the program
with -Xmx and -Xms Java options, e.g.:

> java -Xmx5G -Xms4G -jar TermoPL.jar,

which reserves minimum 4GB and up to 5GB of memory for the program to run.
Using the Conraft tagger also requires more RAM.

References

[1] Francesca Bonin, Felice Dell’Orletta, Simonetta Montemagni, and Giulia Venturi. A
contrastive approach to multi-word extraction from domain-specific corpora. In Nicoletta
Calzolari, Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios Piperidis,
Mike Rosner, and Daniel Tapias, editors, Proceedings of the International Conference
on Language Resources and Evaluation, LREC 2010, 17-23 May 2010, Valletta, Malta.
European Language Resources Association, 2010.

[2] Gerlof Bouma. Normalized (Pointwise) Mutual Information in Collocation Extraction.
In Proceedings of the Biennial GSCL Conference 2009, pages 31–40, Tübingen, 2009.
Gesellschaft für Sprachtechnologie & Computerlinguistik.

[3] Katerina Frantzi, Sophia Ananiadou, and Hideki Mima. Automatic Recognition of Multi-
Word Terms: the C-value/NC-value Method. Int. Journal on Digital Libraries, 3:115–130,
2000.

[4] Małgorzata Marciniak and Agnieszka Mykowiecka. NPMI driven recognition of nested
terms. In Proceedings of the 4th International Workshop on Computational Terminology
(Computerm), pages 33–41. Association for Computational Linguistics and Dublin City
University, 2014.

[5] Małgorzata Marciniak, Agnieszka Mykowiecka, and Piotr Rychlik. Termopl - a flexible tool
for terminology extraction. In Nicoletta Calzolari (Conference Chair), Khalid Choukri,
Thierry Declerck, Marko Grobelnik, Bente Maegaard, Joseph Mariani, Asuncion Moreno,
Jan Odijk, and Stelios Piperidis, editors, Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation (LREC 2016), Portorož, Slovenia, may 2016.
European Language Resources Association (ELRA).

[6] Roberto Navigli and Paola Velardi. Learning domain ontologies from document ware-
houses and dedicated web sites. Computational Linguistics, 30(2):151–179, 2004.

[7] Adam Przepiórkowski, Mirosław Bańko, R. L. Górski, and Barbara Lewandowska-
Tomaszczyk, editors. Narodowy Korpus Języka Polskiego. Wydawnictwo Naukowe PWN,
Warszawa, 2012.

[8] Paul Rayson and Roger Garside. Comparing corpora using frequency profiling. In Pro-
ceedings of the Workshop on Comparing Corpora - Volume 9, WCC ’00, pages 1—-6,
2000.

[9] Jakub Waszczuk. Harnessing the CRF complexity with domain-specific constraints. The
case of morphosyntactic tagging of a highly inflected language. In Proceedings of the
24th International Conference on Computational Linguistics (COLING2012), pages 2789–
2804, Mumbai, India, 2012.

26

[10] Marcin Woliński. Morfeusz reloaded. In Nicoletta Calzolari, Khalid Choukri, Thierry De-
clerck, Hrafn Loftsson, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk,
and Stelios Piperidis, editors, Proceedings of the Ninth International Conference on Lan-
guage Resources and Evaluation, LREC 2014, pages 1106–1111, Reykjavík, Iceland, 2014.
ELRA.

27

