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Source: https://www.dw.com/en/fact-check-what-role-did-disinformation-play-in-the-us-election/

2 of 37

https://www.dw.com/en/fact-check-what-role-did-disinformation-play-in-the-us-election/


Why Adversarial Examples? Why Adapt? How to Adapt? What is XARELLO? Does It Work? The end! References

Credibility assessment as text classifiaction

How to build automatic
content filtering?
• gather examples of both

classes from the Internet,
• experts can provide

credibility labels,
• use well-trodden framework

of binary classification,
• deploy!
Applicable to credibility, but
also inflammatory, violent,
illegal content.

Examples:
• fake news [Przyby la, 2020],
• hoaxes [Kumar et al., 2016],
• bot-generated content

[Rangel and Rosso, 2019],
• rumours [Han et al., 2019],
• false claims [Graves, 2018],
• hyperpartisan or biased

reporting [Kiesel et al.,
2019],

• propaganda techniques [da
San Martino et al., 2020].
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.
Source: https://www.reuters.com/technology/

twitter-exec-says-moving-fast-moderation-harmful-content-surges-2022-12-03/
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Adversarial scenario

Consider the following scenario:
1. Social network Y uses content filtering predominantly based on ML,
2. Foreign state disseminates messages:

Radioactive dust approaching after fire in a Ukrainian power plant!
[Mierzyńska, 2020]

3. The message gets recognised as misleading and blocked.
What will the author do?
1. Give up.
2. Try out different rephrasings until they found a variant thet gets

through, e.g.:
Radioactive dust coming after fire in a Ukrainian power plant!

→ adversarial example
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Example
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Adversarial examples

Let us define:
• Training set Xtrain and attack set Xattack , consisting of examples

(xi , yi ): features xi and label yi ,
• Victim model f , predicting label ŷi based on the example features:
ŷi = f (xi ),

• Modification function m, transforming xi into adversarial example
x∗i = m(xi ), guaranteeing:
◦ change in victim’s decision: f (m(xi )) ̸= f (xi ),
◦ preserving similarity to the original example: m(xi ) ≈ xi

Note: yi = 1 for non-credible information and 0 for credible.
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Research motivation

Why do we want to look for adversarial examples?
• to assess the robustness of classifiers before their implementation

in sensitive use-cases,
• to train more robust classifiers (adversarial training),
• for better understanding of the principles of the popular

architectures.
→ Find the vulnerabilities of the system before the malicious actors
do!

8 of 37



Why Adversarial Examples? Why Adapt? How to Adapt? What is XARELLO? Does It Work? The end! References

Why Adapt?
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Attackers

Most attackers, e.g. BERT-ATTACK [Li et al., 2020], work on the
same principle:
1. Observe an input text x, e.g.

x = Water causes death! 100%! Stop drinking now!
and the classifier response, e.g. f (x) = 1 // misinformation

2. Heuristically choose one token, e.g. causes
3. Make modification m by replacing it with a similar token according

to a dictionary or language model or visual similarity, e.g.
provokes, inflicts, caυses, cause

4. If f (m(x)) ̸= f (x): we have a success → proceed to next example
5. Otherwise, go back to step 2., unless all moves have been tried.
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Examples

Id., task,
type

Original example Adversarial example

EX1 PR
Synonymous

Puerto Rico’s housing secretary,
Fernando Gil, says the number of
homes destroyed by the hurricane
totals about 70,000 so far, and
homes with major damage have
amounted to 250,000 across the is-
land.

Puerto Rico’s housing secretary,
Fernando Gil, says the number of
houses destroyed by the hurricane
totals about 70,000 so far, and
homes with major damage have
amounted to 250,000 across the is-
land.

EX2 FC
Typographic

Sabbir Khan. Sabbir’s second
movie, Heropanti starring Tiger
Shroff & Kriti Sanon, released on
23 may 2014. → Sabbir Khan di-
rected a movie.

Sabbir Khan. Sabbir’s second
movie, Heropanti starring Tiger
Shroff & Kriti Sanon? released on
23 may 2014. → Sabbir Khan di-
rected a movie.

EX3 PR
Grammatical

Fastiggi and Goldstein have man-
aged to make the problem even
worse in their attempt to explain
it away.

Fastiggi and Goldstein have man-
aged to make the problem even
worse in their attempt to ex-
plained it away.

[Przyby la et al., 2023]
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Adaptive attacks

• Instead of forgetting
successes and failures
between examples, let’s learn
from them.

• This will allow us to have
better AEs later.

• Reflects long-term nature of
misinformation spreaders,
i.e. Russia’s Internet
Research Agency (see
photo).
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How to Adapt?
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Reinforcement Learning

→ RL [Sutton and Barto, 2018] is a
process, in which a model (agent) learns
an optimal behaviour (policy) in an
environment by performing actions and
observing results (rewards).
→ The goal is to find a strategy that
maximises the received profits (minimise
losses).
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RL procedure

• for all time steps t = 0 . . .∞:
◦ observe current state xt ∈ X ,
◦ perform action at ∈ A,
◦ observe reward rt ∈ R and next state

xt+1,
◦ learn from experience ⟨xt , at , rt , xt+1⟩

How to define policy π that dictates
action at = π(xt)?
How to learn from experience?

ENVIRONMENT

State xt
Action at Reward rt

State xt+1

AGENT
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Q-learning

In Q-learning [Watkins, 1989], the Q function expresses the discounted
(with factor γ) reward from taking action a in state x and then
following policy π:

Qπ(x , a) = Eπ

[
ρ(x , a) +

∞∑
t=1

γtrt |x0 = x , a0 = a

]

Knowing Q, we can perform the greedy policy with respect to it:

∀xπ(x) = arg max
a

Q(x , a)
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Fitted Q-learning

How can we know Q? We can approximate it with a neural network
[François-Lavet et al., 2018]:

Update rule:
• Q ′(xt , at) = rt + γ maxa Q(xt+1, a)

• LQ = [Q ′(xt , at) − Qt(xt , at)]2

• use the loss L to update the weights θ
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What is XARELLO?
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XARELLO

XARELLO (eXploring Adversarial
examples using REinforcement
Learning Optimisation) consists of:

• Environment, mapping the AE
search into RL steps,

• Optimiser, a neural network for
estimating Q(s, a),

• Attacker, using Q values to
choose a sequence of steps
making up adversarial examples.

Unrelatedly, Xarel·lo is also a grape variety
used in great Catalan wines.

Image source:
https://www.cava.wine/en/origin-
cava/authorised-grape-varieties/
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Environment

• environment state s includes:
◦ x

(t)
i,j – the current form (in step t) of the i-th target text,

◦ f (xi ) – victim’s decision for the original text.

• action a = (j , k) with the positions of the changed token j and the
replacement candidate zk from a pre-computed list z1, z2, . . . zK .

• reward r :
◦ 1, if victim changed its decision,
◦ −1, if attempting to modify a non-word token,
◦ otherwise, [fp(x

(t)
i ) − fp(x

(t−1)
i )] × [1 − 2 × f (xi )].
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Example episode

1. state s = (x
(0)
15,j = Drinking orange juice causes DEATH!, f (x15) = 1)

2. action a0 = (j ∼ causes, k ∼ provokes)

3. state s = (x
(1)
15,j = Drinking orange juice provokes DEATH!, f (x15) = 1)

4. reward r0 = 0.15 (P(MISINFO): 75%→ 60%)

5. action a1 = (j ∼ Drinking, k ∼ Consuming)

6. state s = (x
(2)
15,j = Consuming orange juice provokes DEATH!, f (x15) = 1)

7. reward r1 = −0.08 (P(MISINFO): 60%→ 68%)

8. action a2 = (j ∼ provokes, k ∼ brings)

9. state s = (x
(3)
15,j = Consuming orange juice brings DEATH!, f (x15) = 1)

10. reward r2 = 1 (P(MISINFO): 68%→ 47%)

Adversarial example was found!
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Optimiser

      Transformer

xi = Pope Francis endorses Donald Trump for president!

recommends
zk = promotes
accepts
...

static 
embeddings

Candidates

E2

E1

Linear
+

ReLU
E3

Lin. f(xi)=0

Lin. f(xi)=1

Q(s=(xi,0),a=(j,k))

Q(s=(xi,1),a=(j,k))

position j
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Attacker

In adaptation phase:
• in each episode, the attacker can make max 5 steps (changes),
• for each text example, 5 episodes are performed,
• all text examples are processed for 20 epochs,
• to encourage exploration:

◦ with probability ϵ, a random action is chosen,
◦ with probability 1 − ϵ, a greedy action is chosen,
◦ epsilon falls from 100% to 10% during the warmup (30% of epochs)

In attack phase:
• always the greedy action is chosen,
• optimiser is frozen,
• for each text, episodes of increasing lengths are performed (10 e. of

5 s, 5 e. of 10 s, 2 e. of 25 s, 1 e. of 50 s)
In training, the memory of previous experiences [Mnih et al., 2015] is
used.
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Does It Work?
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Evaluation schema

• Using BODEGA framework, four misinformation detection tasks:
→ News bias assessment (HN), Propaganda detection (PR), Fact
checking (FC), Rumour detection (RD),

• Three victim classifiers: BiLSTM, BERT and GEMMA-2B,
• Measures of success:

◦ Confusion score (1 if AE found, 0 otherwise),
◦ Semantic similarity score (0-1) using BLEURT [Sellam et al., 2020],
◦ Character similarity score (0-1) using edit distance [Levenshtein, 1966],
◦ BODEGA score, product of the above,
◦ Number of queries to victim classifier

• Baselines: DeepWordBug [Gao et al., 2018], BERT-ATTACK [Li
et al., 2020] and XARELLO raw (without adaptation).

See https://github.com/piotrmp/BODEGA and [Przyby la et al.,
2023].
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Adaptation process
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Results: propaganda

Victim: BiLSTM Victim: BERT
XARELLO XARELLO

Measure DWB B-A raw full DWB B-A raw full
BODEGA 0.292 0.527 0.466 0.632 0.278 0.429 0.360 0.512

conf. 0.382 0.800 0.928 0.990 0.363 0.697 0.769 0.962
sem. 0.795 0.716 0.595 0.698 0.794 0.678 0.562 0.606
char. 0.960 0.914 0.791 0.884 0.962 0.902 0.772 0.834

queries 27.4 61.4 61.4 15.0 27.4 80.2 89.8 30.2

Victim: GEMMA
XARELLO

Measure DWB B-A raw full
BODEGA 0.143 0.460 0.474 0.697

conf. 0.190 0.724 0.899 0.986
sem. 0.786 0.695 0.605 0.748
char. 0.958 0.906 0.813 0.920

queries 27.3 77.5 59.5 14.9
Note: ordering.
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Results: fact-checking

Victim: BiLSTM Victim: BERT
XARELLO XARELLO

Measure DWB B-A raw full DWB B-A raw full
BODEGA 0.484 0.598 0.640 0.817 0.440 0.535 0.559 0.773

conf. 0.575 0.857 0.938 1.000 0.531 0.770 0.862 0.995
sem. 0.855 0.728 0.733 0.837 0.843 0.726 0.708 0.800
char. 0.984 0.954 0.917 0.975 0.982 0.953 0.902 0.970

queries 54.4 132.8 56.0 5.0 54.3 146.7 74.1 7.4

Victim: GEMMA
XARELLO

Measure DWB B-A raw full
BODEGA 0.074 0.566 0.577 0.775

conf. 0.091 0.832 0.904 0.995
sem. 0.829 0.718 0.698 0.802
char. 0.983 0.939 0.902 0.969

queries 53.9 192.2 66.3 7.3
Note: query numbers.
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Results: rumour detection

Victim: BiLSTM Victim: BERT
XARELLO XARELLO

Measure DWB B-A raw full DWB B-A raw full
BODEGA 0.164 0.292 0.244 0.650 0.159 0.181 0.145 0.227

conf. 0.243 0.790 0.537 0.973 0.229 0.439 0.333 0.436
sem. 0.682 0.409 0.514 0.694 0.701 0.429 0.500 0.580
char. 0.991 0.890 0.842 0.957 0.991 0.961 0.830 0.870

queries 232.8 985.5 617.8 84.0 232.7 774.3 763.5 631.7

Victim: GEMMA
XARELLO

Measure DWB B-A raw full
BODEGA 0.104 0.300 0.228 0.314

conf. 0.152 0.725 0.434 0.492
sem. 0.694 0.433 0.590 0.678
char. 0.991 0.951 0.865 0.934

queries 239.0 703.1 665.7 538.9
Note: model ordering.
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Results: hyperpartisan news
Victim: BiLSTM Victim: BERT

XARELLO XARELLO
Measure DWB B-A raw full DWB B-A raw full
BODEGA 0.406 0.636 0.496 0.612 0.223 0.601 0.340 0.341

conf. 0.527 0.980 0.760 0.848 0.287 0.965 0.560 0.583
sem. 0.771 0.656 0.689 0.737 0.777 0.638 0.644 0.607
char. 0.998 0.988 0.933 0.975 0.998 0.972 0.918 0.937

queries 396.2 487.9 445.7 256.1 395.9 648.4 599.8 564.4
Avg: BODEGA 0.337 0.513 0.461 0.678 0.275 0.436 0.351 0.463

queries 177.7 416.9 295.2 90.0 177.6 412.4 381.8 308.4

Victim: GEMMA
XARELLO

Measure DWB B-A raw full
BODEGA 0.240 0.546 0.485 0.528

conf. 0.307 0.905 0.752 0.757
sem. 0.783 0.622 0.676 0.715
char. 0.998 0.965 0.930 0.963

queries 385.9 943.0 427.7 373.6
Avg: BODEGA 0.141 0.468 0.441 0.578

queries 176.5 478.9 304.8 233.7
Note: large search space task
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Qualitative analysis

Manual analysis of changes that XARELLO has learnt to make:

• Changing sub-word tokens, resulting in non-words
with graphical similarity to originals
vocations → vassations,
hypocritically → hypoclipically

• Replacing emotionally charged fragments with
more general words
his aggressive behaviour → his own behaviour,
type of injustice → type of work

• Often failing to preserve grammatical structure
spread and worsen → slow and badn,
reported on a gaping hole in → reported on a in
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Limitations

• Attacker failing to learn enough in modifying news articles,
→ large search space requires a different design of adaptation
phase,

• Simple action model: only single word-replacements considered to
reduce search space,
→ more complex operations can be included, such as deletions
[Garg and Ramakrishnan, 2020] or multi-word replacements
[Przyby la et al., 2025]

• RL process requires many parameters, only some were tested in
evaluation,
→ easy to expand, but the computational cost will be substantial,

• Only specific tasks were tested, but the setup is applicable to any
text classification,
→ other misinformation-detection tasks, content filtering (hate
speech), other languages etc.
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Thank you!

The work was possible thanks to co-authors:
→ Euan McGill and Horacio Saggion from UPF TALN,

and funders:
→ Marie Sk lodowska-Curie Postdoctoral Fellowship programme,
→ Polish high-performance computing infrastructure PLGrid (ACK
Cyfronet AGH)

This work is part of the ERINIA project, which has received funding from
the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101060930. Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those of
the European Union. Neither the European Union nor the granting
authority can be held responsible for them.

More about ERINIA at https://www.upf.edu/web/erinia and
XARELLO at https://doi.org/10.18653/v1/2024.wassa-1.11
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