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Diversity: prevalence in NLP

Papers in the ACL An-
thology from 1990 un-
til 2024-07-26 with “di-
versity” or “diverse” in
their title or abstract
(3,653 in total)
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Motivations and objectives

Diversity: lack of formalisation in NLP

Disparate understanding of the notion of diversity

Lack of a unified vocabulary and framework

Limited attemps to systematize the notion of diversity
[Tevet and Berant(2021), Ploeger et al.(2024)]

NLP belongs to the “fields [. . . ] where diversity is prominent
in discussion, but remains undefined or analytically neglected”
[Stirling(2007)]

Objectives

Take steps towards a unified framework for quantification of
diversity in NLP

Take inspiration from fields where diversity has been theorized
and systematically analysed, most prominently ecology
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Contributions

A review of the 308 papers from the past 6 years containing
“diverse” or “diversity” in their title, from the point of view of
diversity quantification
A taxonomy allowing to position various approaches:

motivations behind the quest for diversity (why),
objects on which diversity is quantified (what),
pipeline stages where diversity measures are applied (where)
types of diversity measures (how)
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Theory of diversity in ecology (& Co.)
Mature topic

Dozens of diversity measures defined [Smith and Wilson(1996)] and applied to various
species and their habitats

Measures borrowed from information theory: parameterized entropies
[Patil and Taillie(1982)] and related transformations [Hill(1973)].

Distance measures (underlying diversity) based on functional differences (body
features, behavior, etc.) and positions in the pophylogenetic tree
[Mouchet et al.(2010)].

Unified frameworks [Leinster and Cobbold(2012), Scheiner(2012), Chao et al.(2014)].

Debates on properties of diversity measures measures
[Smith and Wilson(1996), Hoffmann and Hoffmann(2008), Jost(2009)].

Element/category dichotomy

Elements (e.g. individuals) are apportioned into categories (e.g. species)

Dimensions of diversity (pl: różnorodność)

Variety (pl: rozmaitość) – related to the number of categories

Balance (pl: równowaga/zrównoważenie) – evenness of the distribution of
elements in categories

Disparity (pl: zróżnicowanie) – extent of the differences between categories
6
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Why diversity is important in NLP

Ethical Practical

Goal inclusiveness,
equality, fairness

user expectation,
naturalness

Means deontology,
best practices

performance,
informativeness
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Why diversity is important in NLP

Ethical reasons

Diversity as a goal:
digital inclusiveness [Joshi et al.(2020)]
equally serving all users [Khanuja et al.(2023), Liu et al.(2024a)]
representing different languages, language families and scripts
[Kodner et al.(2022), Goldman et al.(2023)]
mitigating the supremacy of English and English-centric bias
[Pouran Ben Veyseh et al.(2022), Asai et al.(2022)]

fair account for diverse cultures [Yin et al.(2021), Mohamed et al.(2022),
Keleg and Magdy(2023), Bhatia and Shwartz(2023), Liu et al.(2024a)], human perspectives
[Parrish et al.(2024)] and opinions [Zhang et al.(2024)]
cover a large variety of topics in education [Hadifar et al.(2023)].

Diversity as a means to achieve a goal
diverse prompt-response pairs ⇒ less offensive LLM answers
[Song et al.(2024)]

diverse attention vectors ⇒ low sensitivity to adversarial attacks
[Yang et al.(2024)]

diverse benchmark ⇒ reliable evaluation [Chen et al.(2023b)]
showing out-of-domain performance [Pradhan et al.(2022)].
highlighting the remaining challenges [Kim et al.(2023c)]
dataset’s diversity more critical in evaluation than its size
[Miao et al.(2020)]
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Why diversity is important in NLP

Practical reasons

Diversity as a goal:
inherent property of human language ⇒ user expectation towards
machine-generated language
need for one-to-many scenarios: diverse spectrum of outputs rather than
a single most optimal output [Kumar et al.(2019), Liu et al.(2020), Han et al.(2021),
Shao et al.(2022), Puranik et al.(2023), E et al.(2023), Hwang et al.(2023)]

high diversity expectations in dialog [Lee et al.(2022)]: diverse system’s
reactions ⇒ highr user’s engagement [Akasaki and Kaji(2019), Kim et al.(2023b)]
naturalness: diversity of human language ⇒ upper bound for systems
[Schüz et al.(2021), Cegin et al.(2023), Liu et al.(2024b)]

Diversity as a means to achieve a goal :
diverse training data ⇒ higher performance
[Narayan and Cohen(2015), Liu and Zeldes(2023), Yang et al.(2018), Yadav et al.(2024),

Tripodi et al.(2021), Shen et al.(2022), Li et al.(2016), Agirre et al.(2016), Zhu et al.(2018),

Zhang et al.(2021), Thompson and Post(2020), Palumbo et al.(2020), Li et al.(2021)]

ensemble model with diverse submodels ⇒ better performances than a
unique model [Song et al.(2021), Kobayashi et al.(2022)]
diverse keywords in class labels ⇒ more accurate classification
[Yano et al.(2024)].
diverse generated text ⇒ less generic and more informative for users
[Park et al.(2023)] 9
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Why diversity is important in NLP: Tendencies

Quest for diversity

Most works advocate for an increase of diversity

Few posit adjustment to the task: factual ⇒ low diversity, storytelling ⇒ high
diversity

Few see lower diversity of AI vs. human language as opportunity: bot detection,
fack checking, protection of democracy

Quality/diversity trade-off

Opposing objectives: quest for diversity vs. generative quality and consistence
[Ma et al.(2024), Ippolito et al.(2019), Zhang et al.(2021), Shao et al.(2022), Chen et al.(2023a)]

Interest in theorizing diversity

better understanding of the nature of typological diversity [Ploeger et al.(2024)]

making educated choices of diversity measures
[Tevet and Berant(2021), Lion-Bouton et al.(2022)]

comparative framework in typological diversity for NLP [Poelman et al.(2024)]

Our work
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What diversity is measured on

In-text diversity

Categories are inherent to a text: unique words, unique n-grams, sentences,
syntactic trees

Elements: word occurrences, n-gram occurrences, sentences, occurrences of
syntactic trees

Meta-linguistic diversity

Categories are metada of text: language, language family, branch in a
phylogenetic tree, genre, domain, time period, racial identity or politycal opinion
of the text author

Elements: texts, language

Diversity of processing

Categories = elements: annotators, models (in an ensemble), NLP tasks,
evaluation metrics, attention vectors

diverse = several different

11



Intro Theory Why What Where How Discussion

Where diversity is measured

NLP area #

Generation 61
Corpus creation 22
Classification 17
Dialogue 15
Machine translation / Paraphrasing 10
Question answering / Summarization 9
Modeling 7
Recommendation / Parsing 5
Evaluation / Information extraction / Language
Technology

4

Morphology / Vision / Inference 3
Speech / Survey or Opinion paper 2
Matching / Spellchecking 1
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Where diversity is measured

Data
collection
(39, *2)

Annotation
(3)

Input
(24, *5)

System
construction
(22, *4)

Output data
(83, *9)

Evaluation
(11)
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How diversity is measured

197 papers with actual quantifcation of diversity

150 different diversity measures ⇒ we group them into 3 approaches and 9
families

3 types of approaches:

Absolute quantification: a diversity score for the observed set
independently of other sets
Relative quantification: a diversity of the observed set by comparison to a
reference set
Introspective quantification: rank or score on a scale, by human
judgement
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How diversity is measured

Family of diversity measures #

dQuantity: count categories 55
dBLEU: use BLEU for distances 41
dDistance: quantify differences between categories 37 + 8 +

41
dTTR: use the number of categories and normalize it by the num-
ber of elements

30

dEntropy: calculate unpredictability of categories 21
dOverlap: find the overlap between the categories in the observed
set and in a reference set

9

dBERT: use BERT’s contextual vector space for distances 8
dHuman: rely on a human evaluation 7
dDistrib: use the distance between observed and reference distri-
butions

3

dOther: other measures 36
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How diversity is measured

Diversity measures in NLP cast on 3 dimensions

Balance Disparity

Variety

dQuantity

dDistance

dB
ER

T

dB
LE

U

dE
nt
ro
py

dDistrib

dTTR

dOverlap

dHuman
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Absolute quantification

Absolute quantification

Assigning a diversity score to the observed set independently of other sets.

Parameters

n – number of (observed) categories

m – number of (observed) elements

P = ⟨p1, ..., pn⟩ – distribution of categories,
D = ⟨⟨d1,1, ..., d1,n⟩ , ..., ⟨dn,1, ..., dn,n⟩⟩ – pairwise distances between the
categories.
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Absolute quantification

dQuantity ∈ Variety
Variants of:

richness (n,m,P,D) = n (1)

e.g. number of languages, language families, genres etc. in a dataset (meta-linguistic
diversity).

dTTR /∈ {Variety, Balance, Disparity}

Variants of
type-token-ratio (n,m,P,D) =

n

m
(2)

Frequently: Distinct-n, Dist-n or Diverse-n:

ratio of distinct n-grams to the total number of tokens [Li et al.(2016)], n ∈ [1, 4]

issues: not monotonic to n
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Absolute quantification

dEntropy ∈ {Variety, Balance}

Mostly [Shannon and Weaver(1949)]:

entropy (n,m,P,D) =
n∑

i=1

pi logb

(
p−1i

)
(3)

Monotonic with n. Maximum value logb(n) with uniform distribution.

dDistance ∈ {Disparity}

Aggregation and normalization of pairwise ditances between categories
[Kim et al.(2024)], complexity O

(
n2

)
:

pairwise (n,m,P,D) =

2 ∗
n∑

i=1

i−1∑
j=1

di,j

n(n − 1)
(4)

Volume of the geometry formed by vector vertices, e.g. convex hall
[Yang et al.(2024)]

Entropy of distances [Yu et al.(2022)] 19
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Absolute quantification
dBLEU ∈ dDistance ∈ {Disparity}

Mostly average of BLEU between two texts [Zhu et al.(2018)], variant of pairwise:

Self-BLEU (n,m,P,D) =

n∑
i=1

n∑
j=1
BLEU

(
senti , sentj

)
n2

(5)

The higher BLEU, the larger the diversity.

dBERT ∈ dDistance ∈ {Disparity}

Mostly BERT score [Zhang* et al.(2020)]: F-measure between two texts X and Y :

RBERT =
1

|X |
∑
xi∈X

max
yj∈Y

x⃗i
⊤y⃗j (6)

PBERT =
1

|Y |
∑
yj∈Y

max
xi∈X

y⃗j
⊤x⃗i (7)

FBERT = 2
PBERT · RBERT
PBERT + RBERT

(8)
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Relative quantification
Relative quantification

Assigning a diversity score to the observed set O in comparison to a reference set R.
Two opposed variants:

R is considered diverse, e.g. it is curated with diversity in mind, and O should
be as close as possible to R [Samardzic et al.(2024)]

O is expected to differ from R, e.g. generated utterances should be different
from the training utterances [Murahari et al.(2019)]

dDistrib /∈ {Variety, Balance, Disparity}

Distributions P, Q of categories in R and O are compared, e.g.:

cross-entropy (Q,P) =
n∑

i=1

qi logb

(
p−1i

)
(pl: entropia krzyżowa) (9)

dOverlap /∈ {Variety, Balance, Disparity}

Categories in R and O are compared, e.g.:

Jaccard (nR , nO) =
|nR ∩ nO |
|nR ∪ nO |

(10)
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Introspective quantification

dHuman /∈ {Variety, Balance, Disparity}

Humans are asked to judge diversity by:

ranking text samples for diversity [Liu et al.(2023)]

scoring text samples along a diversity scale [Kim et al.(2023a)]

We cannot a priori know if humans rely on categories and elements for their judgment.
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Discussion

Diversity – prevalent concept in NLP

. . . but used informally

28% relevant papers judge diversity important without defining it
Further 20% only count the number of categories
Often coversing a few categories is already considered diverse
The choice of measures is rarely justified, their properties are not
addressed
Some measures are unclear, even in their original definitions

. . . used inconsistently across papers

no uniform terminology and methodology
197 papers with diversity quantification ⇒ 150 different diversity measures
calling the same measure different names
using the same name for different measures

Unawareness of the SOTA in other scientific domains

very few explicit links to longstanding theories of diversity from domains
like ecology
hardly any references to variety, balance or disparity
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Prototypical scenarios

Scenario 1: Corpus creation

Where: data collection

Why: ensuring inclusiveness and equality (ethical goal) and/or ensuring
performance (practical means)

What: meta-linguistic categories – text genres, languages, language genera,
language families

How: measures from dQuantity (variety)

Example: highly multilingual morphological inflection [Vylomova et al.(2020)]

Scenario 2: Generation

Where: output data

Why: user expectation or naturalness (practical goal), e.g. enhance chatbot
responses for diversity and relevance simultaneouslyon-to-many scenario

What: in-text categories – text genres, languages, language genera, language
families

How: measures from dTTR or dDistance

Example: enhance chatbot responses for diversity and relevance, by a
summarizing latent variable inside an RNN [Liu et al.(2023)]
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Diversity vs. naturalness

Correlation

Scenario 1

Natural phenomenon: few languages are well-resourced and many others
are not
Compensation by diversity-driven data selection
Diversity and naturalness are opposed

Scenario 2

Diversity of human answers = upper bound for the systems’ generations
Diversity and naturalness are positively correlated

Naturalness of categories

(Meta-)linguistically meaningful (natural) categories: words, idiomatic
expressions, sentences, syntactic trees, genres, language families, typological
features, speakers, countries, ethnicities, NLP tasks, etc.

Non-linguistic (artifical) categories: n-grams, BERT word pieces, word
embeddings, attention vectors, points in a vector space, etc. (approximations of
natural categories whose diversity might be too hard to compute)
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Discreteness vs. continuousness

28% papers: diversity measures (dBLEU, dBERT) applied directly to elements

trivial disparity: elements = categories
variety = dataset size
balance is moot

tension:

NLP – continuous representations
ecology – categorical modelling
reason for little popularity of the diversity theory in NLP ?
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Future work

Standardize diversity quantification in NLP

Systematically incorporate diversity as an evaluation criterion in benchmarks

Systematize and enhance methods for achieving diversity

corpus sampling strategies
model training techniques
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Schüz, S., Han, T., and Zarrieß, S. (2021).

Diversity as a by-product: Goal-oriented language generation leads to linguistic variation.
In H. Li, G.-A. Levow, Z. Yu, C. Gupta, B. Sisman, S. Cai, D. Vandyke, N. Dethlefs, Y. Wu, and J. J. Li,
eds., Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, pp.
411–422, Singapore and Online. Association for Computational Linguistics.

Shannon, C. E. and Weaver, W. (1949).

A Mathematical Theory of Communication. University of Illinois Press, Urbana.

Shao, C., Wu, X., and Feng, Y. (2022).

One reference is not enough: Diverse distillation with reference selection for non-autoregressive translation.
In M. Carpuat, M.-C. de Marneffe, and I. V. Meza Ruiz, eds., Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
pp. 3779–3791, Seattle, United States. Association for Computational Linguistics.

Shen, Y., Liu, Q., Mao, Z., Wan, Z., Cheng, F., and Kurohashi, S. (2022).

Seeking diverse reasoning logic: Controlled equation expression generation for solving math word problems.
In Y. He, H. Ji, S. Li, Y. Liu, and C.-H. Chang, eds., Proceedings of the 2nd Conference of the Asia-Pacific
Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on
Natural Language Processing (Volume 2: Short Papers), pp. 254–260, Online only. Association for
Computational Linguistics.

Smith, B. and Wilson, J. B. (1996).

A Consumer’s Guide to Evenness Indices.
Oikos, 76(1), 70–82.
Number: 1 Publisher: [Nordic Society Oikos, Wiley].

40



Bibliography XIV

Song, B., Pan, C., Wang, S., and Luo, Z. (2021).

DeepBlueAI at SemEval-2021 task 7: Detecting and rating humor and offense with stacking diverse
language model-based methods.
In A. Palmer, N. Schneider, N. Schluter, G. Emerson, A. Herbelot, and X. Zhu, eds., Proceedings of the
15th International Workshop on Semantic Evaluation (SemEval-2021), pp. 1130–1134, Online. Association
for Computational Linguistics.

Song, F., Yu, B., Lang, H., Yu, H., Huang, F., Wang, H., and Li, Y. (2024).

Scaling data diversity for fine-tuning language models in human alignment.
In N. Calzolari, M.-Y. Kan, V. Hoste, A. Lenci, S. Sakti, and N. Xue, eds., Proceedings of the 2024 Joint
International Conference on Computational Linguistics, Language Resources and Evaluation
(LREC-COLING 2024), pp. 14358–14369, Torino, Italia. ELRA and ICCL.

Stirling, A. (2007).

A general framework for analysing diversity in science, technology and society.
Journal of The Royal Society Interface, 4(15), 707–719.
Number: 15 Publisher: Royal Society.

Tevet, G. and Berant, J. (2021).

Evaluating the evaluation of diversity in natural language generation.
In Proceedings of the 16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume, pp. 326–346, Online. Association for Computational Linguistics.

41



Bibliography XV

Thompson, B. and Post, M. (2020).

Paraphrase generation as zero-shot multilingual translation: Disentangling semantic similarity from lexical
and syntactic diversity.
In L. Barrault, O. Bojar, F. Bougares, R. Chatterjee, M. R. Costa-jussà, C. Federmann, M. Fishel, A. Fraser,
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