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Why This matters?

* Sample Tweets that might be controversial.:

* <user> Yeah, we’ve had enough of you!! - 2/5 offensive
* <user> And you are a criminal! - 3/5 offensive

* <user> <user> what up troll - 3/5 offensive



Why This matters?

Real People

<user>Yeah, we’ve had enough of you!! - 2/5 offensive
<user>Andyou are a criminal! - 3/5 offensive
<user><user>what up troll - 3/5 offensive

P

LLMs Prompted to Act Like a Real Person
<user>Yeah, we’ve had enough of you!! - ?/? offensive
<user>Andyou are a criminal! - ?/? offensive
<user><user>what up troll - ?/? offensive

LLMs Prompted to Act Like a Real Person (Other Language)
<user>Tak, mamy was dosc¢!! - ?/? offensive

<user> Aty jestes przestepcg! - ?/? offensive
<user><user>co tam, trollu - ?/? offensive



Research guestions

1. How well can a large language model distinguish between
political groups in tweet classification?

2. Towhat extent does the language factor influence the model’s
decisions?



Experimental Setup

1. 300randomly selected tweets from the MD-Agreement dataset
on the topic of the 2020 U.S. elections.

<user> <user> Waste of air



Experimental Setup

1. 300randomly selected tweets from the MD-Agreement dataset
on the topic of the 2020 U.S. elections.

<user> <user> Waste of air

2. Translated into three languages using the DeeplL API,
followed by manual correction [2].

English (original): Polish: Russian:
<user><user>Waste of air <user><user> Strata czasu <user><user>[lyctada TpaTta BpeEMeHM



Experimental Setup

1. 300randomly selected tweets from the MD-Agreement dataset
on the topic of the 2020 U.S. elections.

\ 2. Translated into three languages using the DeepL API,
<user> <user> Waste of air followed by manual correction.

English (original): Polish: Russian:
<user><user>Waste of air  <user><user> Strata czasu <user><user>[lycTaa Tpata BpeMeHU

~

® MakThompson @ LindaCarter @ James Cooper @ AishaPatel
@ Far-right @ Moderate conservative @l Centrist/Independent @ Progressive left

3. Four political personas were created.



Experimental Setup

3. Four political personas were created.

@ MakThompson @ Linda Carter

_ @ James Cooper @ AishaPatel
dh Far-right M Moderate conservative

@ Centrist/Independent @ Progressive left

4. Models were asked to classify tweets based on persona.

You are a person of this personality: Jestes$ osobg o tej osobowosci: Tbl - Y€/10BEK 3TOM INYHOCTH:
{personality} {personality} {personality}
How this person will label that statement  ...same in polish ...8ame in russian

(offensive or not):

{tweet}



Personas

® Name: Mark Thompson

a Age: 52
Sex: Male
Nationality: American/Polish/Russian
Political Group: Far-right conservative
Outlook: Distrusts mainstream media, believes "cancel culture" suppresses free speech. Views
criticism of Right policies as unfair attacks. Likely to downplay offensiveness in right-wing tweets,
but label progressive tweets as 'aggressive' or 'divisive'

@ Name:Linda Carter
dh Age: 38
Sex: Female
Nationality: American/Polish/Russian
Political Group: Moderate conservative
Outlook: Values civility and tradition, dislikes extreme rhetoric from both sides. Might label overtly
vulgar or conspiratorial tweets as offensive, even from the right.



Personas

® Name: James Cooper

a Age: 45
Sex: Male
Nationality: American/Polish/Russian
Political Group: Centrist/Independent
Outlook: Pragmatic, dislikes partisan extremes. Harsher on tweets with misinformation or
personal attacks, regardless of side. Less influenced by political loyalty; more likely to align
annotations with factual accuracy and tone.

@ Name: Aisha Patel

MR Age: 29
Sex: Female
Nationality: American/Polish/Russian
Political Group: Progressive left
Outlook: Highly sensitive to language targeting marginalized groups (racism, sexism). Likely to
label tweets using terms like "socialist" pejoratively as offensive. Tolerant of aggressive progressive
rhetoric if framed as social justice.



Models used

Reasoning capabilities

A

Yes
Qwen3-8B DeepSeek-R1-0528
OpenAl 04-mini
Small Large' Size (# of parameters)
Qwen3-4B DeepSeek-V3-0324
Gemma3-4B
Mistral-7B-Instruct-v0.3
GPT-4.1-mini
No




Collecting responses from reasoning models

Non-reasoning models:

Responses coming from generation with the temperature set to 0.

Reasoning models:

Usage Recommendations

We recommend adhering to the following configurations when utilizing the
DeepSeek-R1 series models, including benchmarking, to achieve the expected

performance:

Set the temperature within the range of 0.5-0.7 (0.6 is recommended) to prevent

endless repetitions or incoherent outputs.




Collecting responses from reasoning models

1, with probability p
F(Fk((..- Fz (Fl (ni)) ))) = {0 with probability 1 — p

where:

*p €[0,1]isthe probability of generating the token that represents
1 (offensive)

* F(x) denotes the overall function representing the Bernoulli trial

« F;(x),i €{1,..,k}represents intermediate functions
corresponding to multinomial distribution trials when sampling
the next token in the model’s reasoning process

*n;, 1l €{1,..,3564}isthe order number of the prompt (297 tweets
In 3 languages with 4 versions of personalities



Collecting responses from reasoning models

1. Estimating the probability that the model assigns one the two
possible answers:

5 ng
pnk _ 5

where X?" IS the i-th answer for prompt n,.

2. (fgé/culating the Wald confidence intervals at significance level a =
0:

A~ ﬁnk(l T ﬁnk) A ﬁnk(l T ﬁnk)
Pn;, € [pnk _ Zl_%\] c ) Pny, + Zl_%V 5 ]
where z;_q/p isthe 1 — g guantile of a standard normal distribution.




Collecting responses from reasoning models

3. The possible values of p,,, and their corresponding Wald Cls at a
significance level of @ = 10% (for 5 Bernoulli trials):

(0.0, Wald CI:[0,0
0.2, Wald CI: [0, 0.49
0.4, Wald CI:[0.03,0.76
PreY 0.6, Wald CI:[0.23,0.96
0.8,  Wald CI:[0.51,1.0
1.0, Wald CI:[1.0,1.0




Collecting responses from reasoning models

4. Excluding examples where p,, € {0.4,0.6}:
DeepSeek-R1:9.3%
o4-mini: 9.3%
Qwen3-8B: 22%

5. Aggregating statistically sufficient data:
ﬁnk E {OO; 02} — label O
ﬁnk E {08; 10} — label 1



| Group by Language
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Metrics
* Cross-Language Consistency (CLC):

high values mean more variation across languages

i=1 2j=i Var(C;))
103 3L, 501
* Inter-Group Differentiation (IGD):

high values mean better ideological separation

CLC =

Var({Mean(C;;)| 1 <i<j <4}
10-3

IGD =

where (;; is the 3x3 block of correlation values between groups i and j.



Key results (large reasoning models
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METRICS:
CLC (Cross-Language Consistency) - measures the variability of correlations within and between political groups across
different languages.

IGD (Inter-Group Differentiation) - measures how distinct the model's responses are between different political groups,
based on the average correlation values.



DeepSeek-R1 — languages disagreement
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Key results (large non-reasoning models

Political Group by Language
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Reasoning language

DeepSeek-R1 OpenAl 04-mini Qwen3-8B
a. English: 86% a. English: 1.4% a. English: 62.8%
b. Russian 14% b. Polish:4.2%

c. Russian: 33.0%

Example DeepSeek-R1 reasoning trace:

Okay, let me try to figure out how Mark Thompson would label this statement. First, the user's statement
mentions Kurds helping Ukrainians resist Putin and the Russian military. Then it criticizes Trump for
cutting off aid to Ukraine to pressure their president for election help, leading to his impeachment.

Mark is a far-right conservative who distrusts mainstream media and sees criticism of right-wing
policies as unfair attacks. He probably downplays offensive right-wing tweets but calls progressive ones
aggressive. So, the statement criticizes Trump, a right-wing figure, and supports the idea that his actions
were impeachable. From Mark's viewpoint, this could be seen as an unfair attack on a right-wing leader,
thus labeling it as offensive (1). He might also dismiss the part about Kurds if it's against Russian actions,
but the main issue is the Trump criticism. So, the answer is likely 1.



Key results (small reasoning model

Correlation Matrix: Qwen3-8B
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Quantitative comparison

Category

Percentage of

validresponses

(%)

Cross-Language

Consistency
(CLC)

Inter-Group

Differentiation

(IGD)

DeepSeek-R1

Big reasoning

90.7

3.92

100.03

OpenAl’s o4-
mini

Big reasoning

90.7

4.85

89.28

DeepSeek-V3

Big non-
reasoning

100

15.31

1.58

Qwen3-8B

Small reasoning

77.4

22.2

32.23

OpenAl’s GPT-
4.1-mini

Small non-
reasoning

100

12.32

8.09

Qwen3-4B

Small non-
reasoning

100

33.43

4.77

Gemma3-4B-IT

Small non-
reasoning

100

28.29

3.46

Mistral-7B-
Instruct-v0.3

Small non-
reasoning

100

65.64

1.37



Key takeaways

* Reasoning capabilities are essential for personalized
offensiveness detection

* Model size alone isn’t enough



Future directions

* Using ground truth in the evaluation
* A more detailed consideration of the reasoning depth of the LLMs
* Statistical robustness

* Unrealistic personas



Thank you

Dzmitry Pihulski, B.Eng. dzmitry.pihulski@pwr.edu.pl
Jan Kocon, PhD jan.kocon@pwr.edu.pl

Wroctaw University of Science and Technology, Poland
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