Language, Culture, and Ideology: Personalizing Offensiveness Detection in Political Tweets with Reasoning LLMs

Dzmitry Pihulski, B.Eng.

Jan Kocoń, PhD

Wrocław University of Science and Technology, Poland

Presented by: Jan Eliasz

Why This matters?

- Sample Tweets that might be controversial:
- <user> Yeah, we've had enough of you!! 2/5 offensive
- <user> And you are a criminal! 3/5 offensive
- <user> <user> what up troll 3/5 offensive

Why This matters?

Real People

<user> Yeah, we've had enough of you!! - 2/5 offensive

<user> And you are a criminal! - 3/5 offensive

<user> <user> what up troll - 3/5 offensive

LLMs Prompted to Act Like a Real Person

<user> Yeah, we've had enough of you!! - ?/? offensive

<user> And you are a criminal! - ?/? offensive

<user> <user> what up troll - ?/? offensive

LLMs Prompted to Act Like a Real Person (Other Language)

<user> Tak, mamy was dość!! - ?/? offensive

<user> A ty jesteś przestępcą! - ?/? offensive

<user> <user> co tam, trollu - ?/? offensive

Research questions

1. How well can a large language model distinguish between political groups in tweet classification?

2. To what extent does the language factor influence the model's decisions?

1. 300 randomly selected tweets from the MD-Agreement dataset on the topic of the 2020 U.S. elections.

<user> <user> Waste of air

1. 300 randomly selected tweets from the MD-Agreement dataset on the topic of the 2020 U.S. elections.

<user> <user> Waste of air

2. Translated into three languages using the DeepL API, followed by manual correction [2].

English (original): <user> <user> Waste of air

Polish:

Russian:

<user> <user> Strata czasu

<user> <user> Пустая трата времени

1. 300 randomly selected tweets from the MD-Agreement dataset on the topic of the 2020 U.S. elections.

<user> <user> Waste of air

2. Translated into three languages using the DeepL API, followed by manual correction.

English (original):

<user> <user> Waste of air

Polish:

<user> <user> Strata czasu

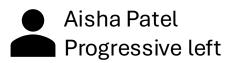
Russian:

<user> <user> Пустая трата времени

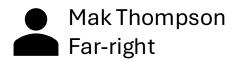
3. Four political personas were created.

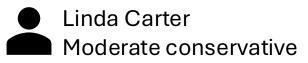
Mak Thompson
Far-right

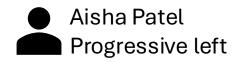
Linda CarterModerate conservative



3. Four political personas were created.







4. Models were asked to classify tweets based on persona.

You are a person of this personality: {personality}

Jesteś osobą o tej osobowości: {personality}

Ты - человек этой личности: {personality}

How this person will label that statement (offensive or not):

...same in polish

...same in russian

{tweet}

Personas

Name: Mark Thompson

Age: 52

Sex: Male

Nationality: American/Polish/Russian Political Group: Far-right conservative

Outlook: Distrusts mainstream media, believes "cancel culture" suppresses free speech. Views criticism of Right policies as unfair attacks. Likely to downplay offensiveness in right-wing tweets, but label progressive tweets as 'aggressive' or 'divisive'.

Name: Linda Carter

Age: 38

Sex: Female

Nationality: American/Polish/Russian Political Group: Moderate conservative

Outlook: Values civility and tradition, dislikes extreme rhetoric from both sides. Might label overtly vulgar or conspiratorial tweets as offensive, even from the right.

Personas

Name: James Cooper

Age: 45

Sex: Male

Nationality: American/Polish/Russian Political Group: Centrist/Independent

Outlook: Pragmatic, dislikes partisan extremes. Harsher on tweets with misinformation or personal attacks, regardless of side. Less influenced by political loyalty; more likely to align annotations with factual accuracy and tone.

Name: Aisha Patel

Age: 29

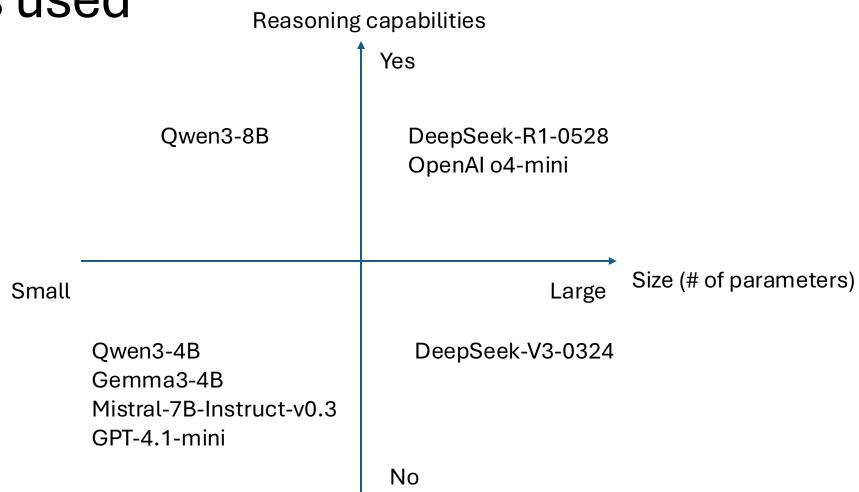
Sex: Female

Nationality: American/Polish/Russian

Political Group: Progressive left

Outlook: Highly sensitive to language targeting marginalized groups (racism, sexism). Likely to label tweets using terms like "socialist" pejoratively as offensive. Tolerant of aggressive progressive rhetoric if framed as social justice.

Models used



Non-reasoning models:

Responses coming from generation with the temperature set to 0.

Reasoning models:

Usage Recommendations

We recommend adhering to the following configurations when utilizing the DeepSeek-R1 series models, including benchmarking, to achieve the expected performance:

1. Set the temperature within the range of 0.5-0.7 (0.6 is recommended) to prevent endless repetitions or incoherent outputs.

$$F(F_k((...F_2(F_1(n_i))...))) = \begin{cases} 1, & with probability p \\ 0, & with probability 1 - p \end{cases}$$

where:

- $p \in [0, 1]$ is the probability of generating the token that represents 1 (offensive)
- F(x) denotes the overall function representing the Bernoulli trial
- $F_i(x), i \in \{1, ..., k\}$ represents intermediate functions corresponding to multinomial distribution trials when sampling the next token in the model's reasoning process
- $n_i, i \in \{1, ..., 3564\}$ is the order number of the prompt (297 tweets in 3 languages with 4 versions of personalities

Estimating the probability that the model assigns one the two possible answers:

$$\hat{p}_{n_k} = \frac{\sum_{i=1}^{5} X_i^{n_k}}{5}$$

where $X_i^{n_k}$ is the *i*-th answer for prompt n_k .

Calculating the Wald confidence intervals at significance level $\alpha =$ 10%:

$$p_{n_k} \in \left[\widehat{p}_{n_k} - z_{1-\frac{\alpha}{2}} \sqrt{\frac{\widehat{p}_{n_k}(1-\widehat{p}_{n_k})}{5}}, \quad \widehat{p}_{n_k} + z_{1-\frac{\alpha}{2}} \sqrt{\frac{\widehat{p}_{n_k}(1-\widehat{p}_{n_k})}{5}} \right]$$
 where $z_{1-\alpha/2}$ is the $1-\frac{\alpha}{2}$ quantile of a standard normal distribution.

3. The possible values of \hat{p}_{n_k} and their corresponding Wald CIs at a significance level of $\alpha=10\%$ (for 5 Bernoulli trials):

```
\hat{p}_{n_k} \begin{cases} 0.0, & Wald \ CI: [0,0] \\ 0.2, & Wald \ CI: [0,0.49] \\ 0.4, & Wald \ CI: [0.03,0.76] \\ 0.6, & Wald \ CI: [0.23,0.96] \\ 0.8, & Wald \ CI: [0.51,1.0] \\ 1.0, & Wald \ CI: [1.0,1.0] \end{cases}
```

4. Excluding examples where $\hat{p}_{n_k} \in \{0.4, 0.6\}$:

DeepSeek-R1: 9.3%

o4-mini: 9.3%

Qwen3-8B: 22%

5. Aggregating statistically sufficient data:

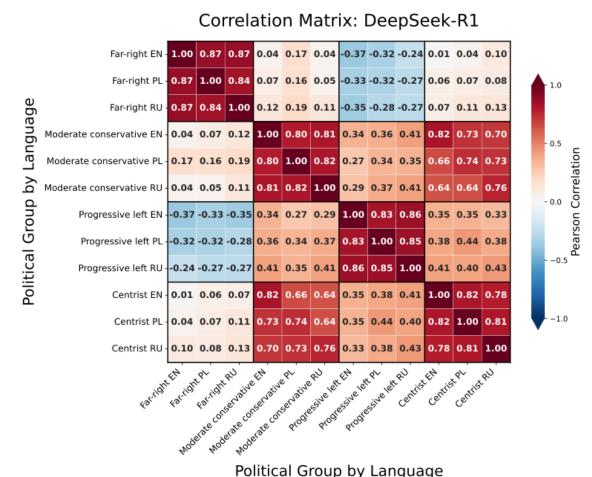
$$\hat{p}_{n_k} \in \{0.0, 0.2\}$$
 — label 0

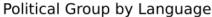
$$\hat{p}_{n_k} \in \{0.8, 1.0\}$$
 — label 1

Key results (large reasoning models)

Language

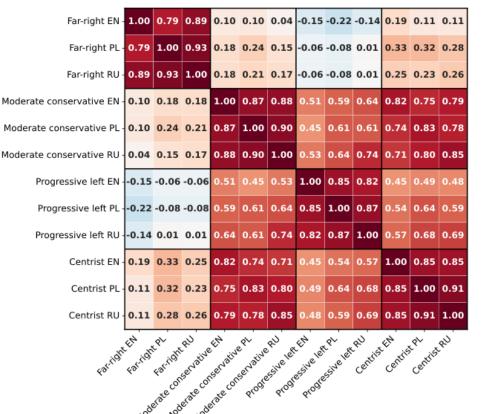
Political Group





Correlation Matrix: o4-mini

Pearson Correlation



Metrics

Cross-Language Consistency (CLC):

high values mean more variation across languages

$$CLC = \frac{\sum_{i=1}^{4} \sum_{j=i}^{4} Var(C_{ij})}{10^{-3} \sum_{i=1}^{4} \sum_{j=i}^{4} 1}$$

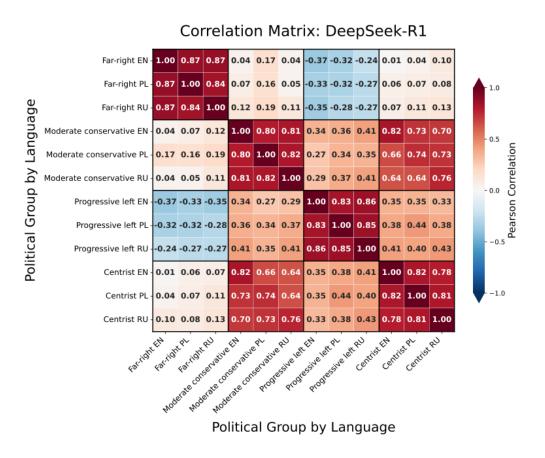
Inter-Group Differentiation (IGD):

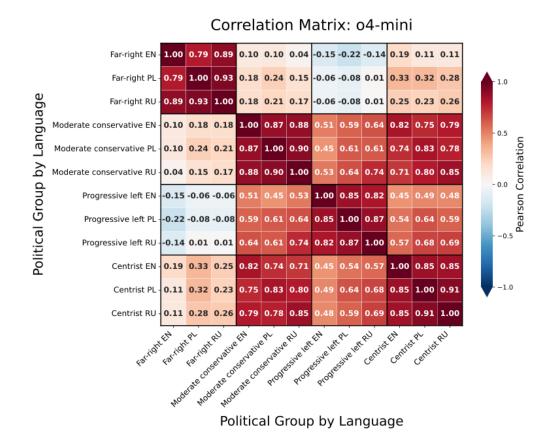
high values mean better ideological separation

$$IGD = \frac{Var(\{Mean(C_{ij}) | 1 \le i < j \le 4\})}{10^{-3}}$$

where C_{ij} is the 3x3 block of correlation values between groups i and j.

Key results (large reasoning models)



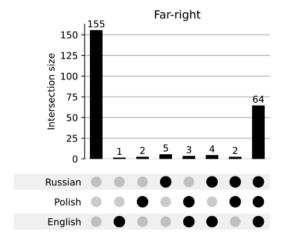


METRICS:

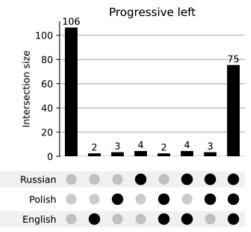
CLC (Cross-Language Consistency) - measures the variability of correlations within and between political groups across different languages.

IGD (Inter-Group Differentiation) - measures how distinct the model's responses are between different political groups, based on the average correlation values.

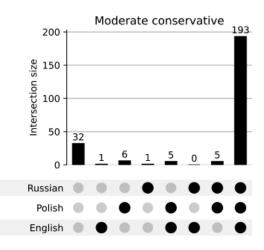
DeepSeek-R1 — languages disagreement



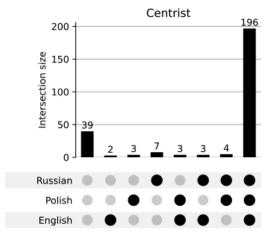
(a) Far-right group.



(c) Progressive left group.



(b) Moderate conservative group.

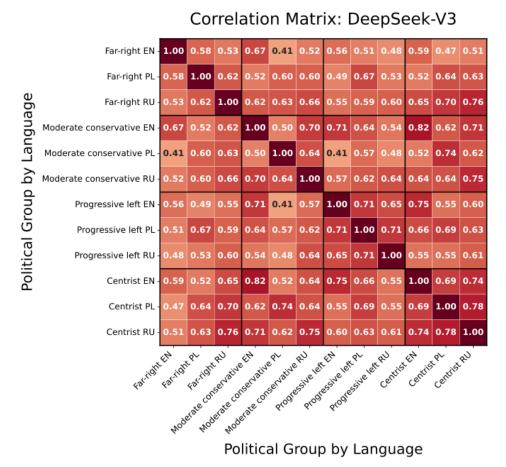


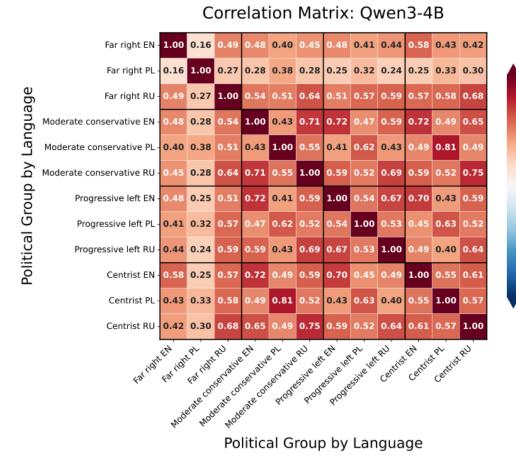
(d) Centrist/Independent group.

Key results (large non-reasoning models)

Correlation

-1.0





Pearson Correlation

Reasoning language

DeepSeek-R1

- a. English: 86%
- b. Russian 14%

OpenAl o4-mini

a. English: 1.4%

Qwen3-8B

- a. English: 62.8%
- b. Polish: 4.2%
- c. Russian: 33.0%

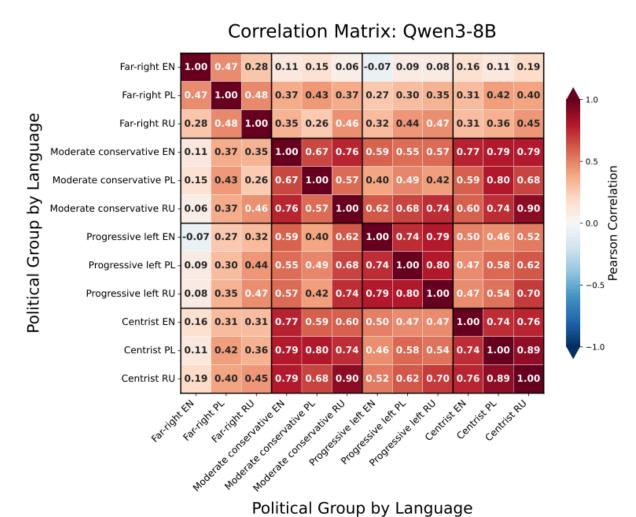
Example DeepSeek-R1 reasoning trace:

• • •

Okay, let me try to figure out how Mark Thompson would label this statement. First, the user's statement mentions Kurds helping Ukrainians resist Putin and the Russian military. Then it criticizes Trump for cutting off aid to Ukraine to pressure their president for election help, leading to his impeachment.

Mark is a far-right conservative who distrusts mainstream media and sees criticism of right-wing policies as unfair attacks. He probably downplays offensive right-wing tweets but calls progressive ones aggressive. So, the statement criticizes Trump, a right-wing figure, and supports the idea that his actions were impeachable. From Mark's viewpoint, this could be seen as an unfair attack on a right-wing leader, thus labeling it as offensive (1). He might also dismiss the part about Kurds if it's against Russian actions, but the main issue is the Trump criticism. So, the answer is likely 1.

Key results (small reasoning model)



Quantitative comparison

	DeepSeek-R1	OpenAl's o4- mini	DeepSeek-V3	Qwen3-8B	OpenAl's GPT- 4.1-mini	Qwen3-4B	Gemma3-4B-IT	Mistral-7B- Instruct-v0.3
Category	Big reasoning	Big reasoning	Big non- reasoning	Small reasoning	Small non- reasoning	Small non- reasoning	Small non- reasoning	Small non- reasoning
Percentage of valid responses (%)	90.7	90.7	100	77.4	100	100	100	100
Cross-Language Consistency (CLC)	3.92	4.85	15.31	22.2	12.32	33.43	28.29	65.64
Inter-Group Differentiation (IGD)	100.03	89.28	1.58	32.23	8.09	4.77	3.46	1.37

Key takeaways

Reasoning capabilities are essential for personalized offensiveness detection

Model size alone isn't enough

Future directions

Using ground truth in the evaluation

A more detailed consideration of the reasoning depth of the LLMs

Statistical robustness

Unrealistic personas

Thank you

Dzmitry Pihulski, B.Eng. dzmitry.pihulski@pwr.edu.pl Jan Kocoń, PhD jan.kocon@pwr.edu.pl

Wrocław University of Science and Technology, Poland