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Why Affective Analysis is Difficult



Subjectivity

Emotions are context-

dependent. Is "crying" sad or

joyful? This requires subtle

understanding that simple

keywords miss.



Concept Drift

Language evolves rapidly.

New labels (e.g., "Cringe",

"Hype") emerge, making

static taxonomies obsolete.



High Overlap

Affective states are not

mutually exclusive. A text

can be "Ironic", "Funny", and

"Offensive" simultaneously.



The Architectural Dilemma

We are currently facing a trade-off between

capability and cost.

▹ Rigid Tools: Traditional encoders (BERT) are fast

but require expensive retraining for any new label.

▹ Costly Flexibility: Modern LLMs offer Zero-Shot

adaptation but are too slow for real-time scale.


Dynamic Data

(New & Overlapping Labels)




Standard Models

Too Rigid


Large LLMs

Too Slow





Standard Approach: Structured JSON

The conventional way to use LLMs for this task is to

ask for a single structured output.

▹ High Complexity: The model must track all 24

labels simultaneously.

▹ Fragile: A single syntax error in the JSON

invalidates the entire response.

▹ Slow Generation: Generating a long JSON string

token-by-token increases latency.

 Single Prompt

"Analyze text and return JSON for all labels..."




LLM Processing



 Complex JSON Output

{ "Joy": true, "Sadness":
false, "Anger": false,
"Irony": true ... (20 more) }



Our Approach: Dichotomic Prompting

We propose decomposing the task into

K independent binary decisions.

▹ Simplicity: The model only

answers "Yes" or "No".

▹ Robustness: No complex syntax

to break. Can handle any number of

labels dynamically.

▹ Parallelizable: Each label is

queried independently.

Query 1:

"Is it Joy?"    "Yes"

Query 2:

"Is it Sad?"    "No"

Query 3:

"Is it Irony?"    "Yes"



Powered by Prefix Caching

▹ Redundancy: The Instruction and Input Text are

identical for all 24 queries.

▹ Optimized "Prefill": The model processes this

shared prefix once and stores the attention states

in memory (KV Cache).

▹ Fast Decoding: For each label, only the tiny,

unique question suffix ("Is it Joy?") is computed.

▹ Result: Processing 24 labels costs marginally

more than processing just one.



Shared Prefix (KV Cache)

(Computed Once)

  

+ "Is Joy?"

Yes/No

+ "Is Sad?"

Yes/No

+ "Is Anger?"

Yes/No

"Instruction + Input Text"



Dataset Composition

Usage Contexts & Sources

A corpus of 10,000 Polish texts aggregated from six

distinct sources to ensure diversity.

CONTEXT SOURCE CORPORA COUNT

  News Wikinews PL 4,633

#  Social

Media

Twitter (713) + CDT

(1,628)
2,341

  Reviews Allegro Reviews 2,000

  Academic Open Coursebooks 1,026

5 Balanced Topics
Politics, Sport, Science, Products, Culture

~2,000 texts per topic

24 Affective Labels
Comprehensive annotation schema covering emotions,

sentiment, and specialized affective states.



Methodology: The Distillation Pipeline


Raw Text

(10,000 Polish Texts)




Teacher

Annotation

(DeepSeek-V3)




Quality Control

(Majority Vote &

Human Check)




Student Fine-

Tuning

(HerBERT, Gemma3,

etc.)



Step 1: Teacher Annotation

We leverage a massive, state-of-the-art LLM to

generate our training data.

▹ Teacher Model: DeepSeek-V3 (Mixture-of-

Experts).

▹ Task: Annotate each text for 24 affective

dimensions.

▹ Redundancy Strategy: To ensure reliability and

filter out hallucinations, the model generates 3

independent annotations for every single text

sample.


DeepSeek-V3

Pass 1 Pass 2 Pass 3

3 Sets of Pseudo-Labels



Step 2: Aggregation & Quality Control

Raw LLM outputs can be noisy. We rigorously filter

them to create a "Silver Standard" dataset.

▹ Majority Vote: A label is assigned only if the

Teacher model selected it in at least 2 out of 3

passes.

▹ Human Verification: A subset of data was

manually verified by human experts to measure

alignment.

▹ Result: High consistency (PSA > 0.8) between the

aggregated LLM labels and human judgment.

Label: True

Label: False

Label: True



Final:

True

(Majority

Wins)



Step 3: Student Fine-Tuning



The Students

We train much smaller,

faster models to replicate

the Teacher's performance.

Models include HerBERT

(Encoder) and Gemma3-1B

(Decoder).



The Exam

Models are fine-tuned using

Binary Cross-Entropy Loss.

They learn to independently

predict the probability of

each of the 24 affective

labels.



The Goal

To achieve LLM-level

accuracy with SLM-level

speed and deployment

costs.



Evaluation Protocols


In-Distribution (ID)

The standard supervised learning setup.

 Train: All 24 Labels

 Test: All 24 Labels


Out-of-Distribution (OOD)

A challenging "Leave-One-Out" scenario.

 Train: 23 Labels (Label X Hidden)

 Test: Only Label X

Goal: Measure how well the model learns specific

patterns seen during training.

Goal: Measure true Zero-Shot Generalization. Can the

model understand a concept just from its

name/prompt?



1. In-Distribution Results (Fine-Tuned)

PLLuM-8B (JSON) 0.812

PLLuM-8B (Dichotomic) 0.801

HerBERT (Baseline) 0.728

Gemma3-1B (Dichotomic) 0.722

CLARIN-1B (Dichotomic) 0.718

Gemma3-1B (JSON) 0.712

Key Finding: Dichotomic prompting (Blue) achieves comparable accuracy to complex JSON output (Red). Small

Decoder models perform on par with the traditional Encoder Baseline (Green).



2. Out-of-Distribution Generalization

Scenario: The model encounters a label (e.g., "Ironic")

it never saw during fine-tuning.

▹ Winner: Zero-Shot Dichotomic. The natural

language question "Is it Ironic?" triggers the

model's pre-trained knowledge.

▹ Loser: Zero-Shot JSON. The complex schema

confuses the model without training.

▹ The "Fine-Tuning Trap": Fine-tuning improves

seen labels but degrades performance on unseen

ones (Overfitting).

Gemma3-1B Macro F1 (OOD)

Zero-Shot (Dichotomic) 0.363

Fine-Tuned (JSON) 0.299

Fine-Tuned (Dichotomic) 0.286

Zero-Shot (JSON) 0.250



Efficiency: Inference Time
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Short Texts (< 4k tokens):

Dichotomic wins (3s vs 9s). Prefix caching optimizes

the 24 small queries.

Crossover (≈ 4k tokens):

Performance equalizes (16s vs 17s) as repeated query

overhead grows.

Long Texts (> 4k tokens):

JSON wins (23s vs 27s). Single-pass generation scales

better here.

 Verdict: Dichotomic dominates for typical inputs.



By combining Dichotomic Prompting with Prefix

Caching, we achieve the best of both worlds:

Flexible
Adapts to new labels (OOD).

Efficient
Fast inference on short texts.

Scalable
Enables distillation to SLMs.



Thank you for your attention.


