Size: 5810
Comment:
|
Size: 4807
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 3: | Line 3: |
= Natural Language Processing Seminar 2020–2021 = | = Natural Language Processing Seminar 2025–2026 = |
Line 5: | Line 5: |
||<style="border:0;padding-bottom:10px">The NLP Seminar is organised by the [[http://nlp.ipipan.waw.pl/|Linguistic Engineering Group]] at the [[http://www.ipipan.waw.pl/en/|Institute of Computer Science]], [[http://www.pan.pl/index.php?newlang=english|Polish Academy of Sciences]] (ICS PAS). It takes place on (some) Mondays, normally at 10:15 am, in the seminar room of the ICS PAS (ul. Jana Kazimierza 5, Warszawa). All recorded talks are available on [[https://www.youtube.com/ipipan|YouTube]]. ||<style="border:0;padding-left:30px">[[seminarium|{{attachment:seminar-archive/pl.png}}]]|| | ||<style="border:0;padding-bottom:10px">The NLP Seminar is organised by the [[http://nlp.ipipan.waw.pjl/|Linguistic Engineering Group]] at the [[http://www.ipipan.waw.pl/en/|Institute of Computer Science]], [[http://www.pan.pl/index.php?newlang=english|Polish Academy of Sciences]] (ICS PAS). It will restart in October and will take place on (some) Mondays, usually at 10:15 am, often online – please use the link next to the presentation title. All recorded talks are available on [[https://www.youtube.com/ipipan|YouTube]]. ||<style="border:0;padding-left:30px">[[seminarium|{{attachment:seminar-archive/pl.png}}]]|| |
Line 7: | Line 7: |
||<style="border:0;padding-bottom:10px">'''NOTE''': Due to restriction of admission to the Institute building, only staff and speakers (including external ones) may currently take part in the seminar. For all other participants the seminar will be broadcast on [[https://www.youtube.com/ipipan|YouTube]].|| | ||<style="border:0;padding-top:5px;padding-bottom:5px">'''15 September 2025'''|| ||<style="border:0;padding-left:30px;padding-bottom:0px">'''Louis Esteve''' (Universite Paris-Saclay) || ||<style="border:0;padding-left:30px;padding-bottom:5px">[[https://zil.ipipan.waw.pl/seminarium-online|{{attachment:seminarium-archiwum/teams.png}}]] '''Diversity and dataset size – a quantitative perspective'''  {{attachment:seminarium-archiwum/icon-en.gif|Talk in English.}}|| ||<style="border:0;padding-left:30px;padding-bottom:15px">The field of Natural Language Processing (NLP) studies the abilities of computer systems to process and generate natural language, and has received increasing attention from the general population since the democratisation of generative and conversational models. However, behind the scenes, state-of-the-art NLP models are trained on ever-larger datasets, reaching trillions of tokens. It may be argued that the creation and use of such immense datasets is motivated by the idea that 'the larger the dataset, the more diverse it is', and that in turn 'if the training set is more diverse, it shall yield better models'. However, these statements thus far remain intuitions and need to be properly tested. To this end, this presentation will tackle methods and caveats of formal diversity quantification including limitations of the literature, a preliminary discussion on the link between diversity and dataset size, as well as their impact on downstream applications.|| |
Line 9: | Line 12: |
||<style="border:0;padding-top:5px;padding-bottom:5px">'''5 October 2020'''|| ||<style="border:0;padding-left:30px;padding-bottom:0px">'''Piotr Rybak''', '''Robert Mroczkowski''', '''Janusz Tracz''' (ML Research at Allegro.pl), '''Ireneusz Gawlik''' (ML Research at Allegro.pl & AGH University of Science and Technology)|| ||<style="border:0;padding-left:30px;padding-bottom:5px">[[https://www.youtube.com/watch?v=LkR-i2Z1RwM|{{attachment:seminarium-archiwum/youtube.png}}]] '''[[attachment:seminarium-archiwum/2020-10-05.pdf|Review of BERT-based Models for Polish Language]]'''  {{attachment:seminarium-archiwum/icon-pl.gif|Delivered in Polish.}}|| ||<style="border:0;padding-left:30px;padding-bottom:15px">In recent years, a series of BERT-based models improved the performance of many natural language processing systems. During this talk, we will briefly introduce the BERT model as well as some of its variants. Next, we will focus on the available BERT-based models for Polish language and their results on the KLEJ benchmark. Finally, we will dive into the details of the new model developed in cooperation between ICS PAS and Allegro.|| ||<style="border:0;padding-top:5px;padding-bottom:5px">'''19 October 2020'''|| ||<style="border:0;padding-left:30px;padding-bottom:0px">'''Inez Okulska''' (NASK National Research Institute)|| ||<style="border:0;padding-left:30px;padding-bottom:5px">'''Concise, robust, sparse? Algebraic transformations of word2vec embeddings versus precision of classification'''  {{attachment:seminarium-archiwum/icon-pl.gif|Talk delivered in Polish.}}|| ||<style="border:0;padding-left:30px;padding-bottom:15px">The introduction of the vector representation of words, containing the weights of context and central words, calculated as a result of mapping giant corpora of a given language, and not encoding manually selected, linguistic features of words, proved to be a breakthrough for NLP research. After the first delight, there came revision and search for improvements - primarily in order to broaden the context, to handle homonyms, etc. Nevertheless, the classic embeddinga still apply to many tasks - for example, content classification - and in many cases their performance is still good enough. What do they code? Do they contain redundant elements? If transformed or reduced, will they maintain the information in a way that still preserves the original "meaning"? What is the meaning here? How far can these vectors be deformed and how does it relate to encryption methods? In my speech I will present a reflection on this subject, illustrated by the results of various "tortures” of the embeddings (word2vec and glove) and their precision in the task of classifying texts whose content must remain masked for human users.|| |
||<style="border:0;padding-top:10px">Please see also [[http://nlp.ipipan.waw.pl/NLP-SEMINAR/previous-e.html|the talks given in 2000–2015]] and [[http://zil.ipipan.waw.pl/seminar-archive|2015–2025]].|| |
Line 20: | Line 15: |
||<style="border:0;padding-top:5px;padding-bottom:5px">'''11 March 2024'''|| ||<style="border:0;padding-left:30px;padding-bottom:0px">'''Mateusz Krubiński''' (Charles University in Prague)|| ||<style="border:0;padding-left:30px;padding-bottom:5px">[[http://zil.ipipan.waw.pl/seminarium-online|{{attachment:seminarium-archiwum/teams.png}}]] '''Talk title will be given shortly'''  {{attachment:seminarium-archiwum/icon-en.gif|Talk in Polish.}}|| ||<style="border:0;padding-left:30px;padding-bottom:15px">Talk summary will be made available soon.|| |
|
Line 26: | Line 27: |
||<style="border:0;padding-top:10px">Please see also [[http://nlp.ipipan.waw.pl/NLP-SEMINAR/previous-e.html|the talks given in 2000–2015]] and [[http://zil.ipipan.waw.pl/seminar-archive|2015–2020]].|| |
Natural Language Processing Seminar 2025–2026
The NLP Seminar is organised by the Linguistic Engineering Group at the Institute of Computer Science, Polish Academy of Sciences (ICS PAS). It will restart in October and will take place on (some) Mondays, usually at 10:15 am, often online – please use the link next to the presentation title. All recorded talks are available on YouTube. |
15 September 2025 |
Louis Esteve (Universite Paris-Saclay) |
The field of Natural Language Processing (NLP) studies the abilities of computer systems to process and generate natural language, and has received increasing attention from the general population since the democratisation of generative and conversational models. However, behind the scenes, state-of-the-art NLP models are trained on ever-larger datasets, reaching trillions of tokens. It may be argued that the creation and use of such immense datasets is motivated by the idea that 'the larger the dataset, the more diverse it is', and that in turn 'if the training set is more diverse, it shall yield better models'. However, these statements thus far remain intuitions and need to be properly tested. To this end, this presentation will tackle methods and caveats of formal diversity quantification including limitations of the literature, a preliminary discussion on the link between diversity and dataset size, as well as their impact on downstream applications. |
Please see also the talks given in 2000–2015 and 2015–2025. |