Locked History Actions

Diff for "seminarium"

Differences between revisions 503 and 504
Revision 503 as of 2020-10-09 16:13:51
Size: 9883
Comment:
Revision 504 as of 2020-10-09 16:14:07
Size: 9881
Comment:
Deletions are marked like this. Additions are marked like this.
Line 17: Line 17:
||<style="border:0;padding-left:30px;padding-bottom:15px">Wprowadzenie wektorowej reprezentacji słów, zawierającej wagi wyrazów kontekstowych i centralnych, obliczone w wyniku mapowania gigantycznych korpusów danego języka, a nie kodujące jedynie ręcznie wybrane, lingwistyczne cechy słów, okazały się dla badań NLP przełomowe. Po pierwszym zachwycie wprawdzie nastąpił okres rewizji i poszukiwania ulepszeń - przede wszystkim poszerzania kontekstu, obsługi homonimów itp. Niemniej jednak klasyczne zanurzenia wciąż znajdują zastosowanie w wielu zadaniach - choćby klasyfikacji treści - i w wielu przypadkach wyniki, które dają, nadal są wystarczająco dobre. Co właściwe kodują? Czy zawierają elementy redundantne? Czy informacje w nich zawarte poddają się przekształceniom lub redukcji w sposób wciąż zachowujący oryginalny „sens”. Czym jest tu sens? Jak bardzo można wektory te deformować i jak to się ma do metod szyfrowania?
W swoim wystąpieniu przedstawię rozważania na ten temat, ilustrowane wynikami kolejnych „tortur” wektorów (word2vec i glove) i ich skuteczności w zadaniu klasyfikacji tekstów, których treść musi pozostać zamaskowana dla ludzkiego oka.||
||<style="border:0;padding-left:30px;padding-bottom:15px">Wprowadzenie wektorowej reprezentacji słów, zawierającej wagi wyrazów kontekstowych i centralnych, obliczone w wyniku mapowania gigantycznych korpusów danego języka, a nie kodujące jedynie ręcznie wybrane, lingwistyczne cechy słów, okazały się dla badań NLP przełomowe. Po pierwszym zachwycie wprawdzie nastąpił okres rewizji i poszukiwania ulepszeń - przede wszystkim poszerzania kontekstu, obsługi homonimów itp. Niemniej jednak klasyczne zanurzenia wciąż znajdują zastosowanie w wielu zadaniach - choćby klasyfikacji treści - i w wielu przypadkach wyniki, które dają, nadal są wystarczająco dobre. Co właściwe kodują? Czy zawierają elementy redundantne? Czy informacje w nich zawarte poddają się przekształceniom lub redukcji w sposób wciąż zachowujący oryginalny „sens”. Czym jest tu sens? Jak bardzo można wektory te deformować i jak to się ma do metod szyfrowania? W swoim wystąpieniu przedstawię rozważania na ten temat, ilustrowane wynikami kolejnych „tortur” wektorów (word2vec i glove) i ich skuteczności w zadaniu klasyfikacji tekstów, których treść musi pozostać zamaskowana dla ludzkiego oka.||

Seminarium „Przetwarzanie języka naturalnego” 2020-21

Seminarium Zespołu Inżynierii LingwistycznejInstytucie Podstaw Informatyki Polskiej Akademii Nauk odbywa się nieregularnie, w poniedziałki, zwykle o godz. 10:15 w siedzibie IPI PAN (ul. Jana Kazimierza 5, Warszawa) i ma charakter otwarty. Poszczególne referaty ogłaszane są na Polskiej Liście Językoznawczej oraz na stronie Lingwistyka komputerowa na Facebooku. Wszystkie nagrania dostępne są na kanale YouTube.

seminar

UWAGA: ze względu na zakaz wstępu do IPI PAN dla osób niezatrudnionych w Instytucie, w seminarium mogą brać udział tylko pracownicy IPI PAN i prelegenci (także zewnętrzni). Dla pozostałych uczestników seminarium będzie transmitowane na kanale YouTube.

5 października 2020

Piotr Rybak (ML Research at Allegro.pl)

https://www.youtube.com/watch?v=LkR-i2Z1RwM Przegląd modeli BERT dla języka polskiego  Wystąpienie w języku polskim.

W ciągu ostatnich lat seria modeli opartych o architekturę BERT istotnie poprawiła skuteczność modeli dla wielu zadań przetwarzania języka naturalnego. Podczas wystąpienia pokrótce opowiemy, jak działa BERT oraz kilka jego wariantów. Następnie skupimy się na modelach dostępnych dla języka polskiego oraz ich skuteczności w rankingu KLEJ. Na koniec opowiemy o nowym modelu opracowanym wspólnie przez IPI PAN i Allegro.

19 października 2020

Inez Okulska (NASK)

Ile treści jest w semantyce, czyli jak bardzo można przekształcać wektory typu word2vec, by nie stracić jakości uczenia  Wystąpienie w języku polskim.

Wprowadzenie wektorowej reprezentacji słów, zawierającej wagi wyrazów kontekstowych i centralnych, obliczone w wyniku mapowania gigantycznych korpusów danego języka, a nie kodujące jedynie ręcznie wybrane, lingwistyczne cechy słów, okazały się dla badań NLP przełomowe. Po pierwszym zachwycie wprawdzie nastąpił okres rewizji i poszukiwania ulepszeń - przede wszystkim poszerzania kontekstu, obsługi homonimów itp. Niemniej jednak klasyczne zanurzenia wciąż znajdują zastosowanie w wielu zadaniach - choćby klasyfikacji treści - i w wielu przypadkach wyniki, które dają, nadal są wystarczająco dobre. Co właściwe kodują? Czy zawierają elementy redundantne? Czy informacje w nich zawarte poddają się przekształceniom lub redukcji w sposób wciąż zachowujący oryginalny „sens”. Czym jest tu sens? Jak bardzo można wektory te deformować i jak to się ma do metod szyfrowania? W swoim wystąpieniu przedstawię rozważania na ten temat, ilustrowane wynikami kolejnych „tortur” wektorów (word2vec i glove) i ich skuteczności w zadaniu klasyfikacji tekstów, których treść musi pozostać zamaskowana dla ludzkiego oka.

Zapraszamy także do zapoznania się z archiwum seminariów z lat 2000–15 oraz listą wystąpień z lat 2015–20.