Size: 10632
Comment:
|
Size: 13515
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 11: | Line 11: |
||<style="border:0;padding-top:5px;padding-bottom:5px">'''14 listopada 2022'''|| ||<style="border:0;padding-left:30px;padding-bottom:0px">'''Łukasz Augustyniak''', '''Kamil Tagowski''', '''Albert Sawczyn''', '''Denis Janiak''', '''Roman Bartusiak''', '''Adrian Dominik Szymczak''', '''Arkadiusz Janz''', '''Piotr Szymański''', '''Marcin Wątroba''', '''Mikołaj Morzy''', '''Tomasz Jan Kajdanowicz''', '''Maciej Piasecki''' (Politechnika Wrocławska)|| ||<style="border:0;padding-left:30px;padding-bottom:5px">'''This is the way: designing and compiling LEPISZCZE, a comprehensive NLP benchmark for Polish'''  {{attachment:seminarium-archiwum/icon-pl.gif|Wystąpienie w języku polskim.}}|| ||<style="border:0;padding-left:30px;padding-bottom:15px">Coraz szersza dostępność zasobów obliczeniowych i danych do trenowania dużych modeli językowych zwiększa zapotrzebowanie na tworzenie solidnych środowisk ewaluacyjnych pozwalających na rzetelne oszacowanie postępów w modelowaniu języka. W ostatnich latach zauważalny jest znaczący postęp prac nad standaryzacją środowisk ewaluacyjnych dla języka angielskiego. Środowiska takie jak GLUE, SuperGLUE czy KILT stały się standardowymi narzędziami do oceny modeli językowych. W tworzeniu środowisk dla innych języków wielu badaczy koncentrowało się na replikowaniu środowiska GLUE, czego przykładem jest polski benchmark KLEJ. W niniejszej pracy przedstawiamy przegląd prac nad tworzeniem środowisk ewaluacyjnych dla języków nisko-zasobowych. Pokazujemy, że wciąż wiele języków nie posiada wyczerpującego zestawu danych testowych do oceny modeli językowych. Wskazujemy obecne w środowiskach ewaluacyjnych luki i porównujemy dostępne w ramach tych środowisk zadania odnosząc się przy tym do języka angielskiego i języka chińskiego - języków o licznych zasobach treningowo-testowych. Głównym wynikiem niniejszej pracy jest LEPISZCZE – nowe środowisko ewaluacyjne dla polskiej technologii językowej opartej na modelowaniu języka, z szerokim zestawem różnorodnych zadań testowych. Zaproponowane środowisko zostało zaprojektowane z myślą o elastyczności w dodawaniu zadań, wprowadzaniu nowych modeli językowych, nadsyłaniu wyników oraz wersjonowaniu danych i modeli. Wraz ze środowiskiem dostarczamy również ocenę kilku nowych modeli językowych oraz dołączamy zarówno poprawione zbiory istniejące w literaturze jak również i nowe zbiory testowe dla nowych zadań. W środowisku zawarto 5 istniejących zbiorów danych i 8 nowych zbiorów danych, które dotychczas nie były używane w ewaluacji modeli językowych. W pracy zawarto również doświadczenia i wnioski wynikające z pracy nad tworzeniem środowiska ewaluacyjnego LEPISZCZE jako wskazówki dla projektantów podobnych środowisk w innych językach o ograniczonych zasobach językowych.|| |
Seminarium „Przetwarzanie języka naturalnego” 2022–23
Seminarium Zespołu Inżynierii Lingwistycznej w Instytucie Podstaw Informatyki Polskiej Akademii Nauk odbywa się średnio co 2 tygodnie, zwykle w poniedziałki o godz. 10:15 (niekiedy online – prosimy o korzystanie z linku przy tytule wystąpienia) i ma charakter otwarty. Poszczególne referaty ogłaszane są na Polskiej Liście Językoznawczej oraz na stronie Lingwistyka komputerowa na Facebooku. Nagrania wystąpień dostępne są na kanale YouTube. |
3 października 2022 |
Sławomir Dadas (Ośrodek Przetwarzania Informacji) |
|
Transformacja zdań lub krótkich tekstów do postaci gęstych wektorów o stałej liczbie wymiarów znajduje zastosowanie w zadaniach takich jak wyszukiwanie informacji, odpowiadanie na pytania, grupowanie tekstów czy detekcja plagiatów. Prostym sposobem na konstrukcję tego typu reprezentacji jest agregacja wektorów wygenerowanych przez model języka lub pochodzących z zanurzeń słów. Natomiast wyższej jakości reprezentacje można uzyskać poprzez dodatkowy fine-tuning modelu języka na parach zdań semantycznie podobnych. W prezentacji przedstawione zostaną metody uczenia enkoderów zdaniowych bazujących na architekturze Transformer oraz nasze doświadczenia z trenowaniem takich modeli dla języka polskiego. Ponadto omówimy sposoby na automatyczne pozyskanie dużych zbiorów parafraz korzystając z publicznie dostępnych korpusów. Pokazany zostanie także przykład zastosowania enkoderów zdaniowych w praktyce, w systemie informatycznym służącym do wykrywania niedozwolonych zapisów w umowach konsumenckich. |
14 listopada 2022 |
Łukasz Augustyniak, Kamil Tagowski, Albert Sawczyn, Denis Janiak, Roman Bartusiak, Adrian Dominik Szymczak, Arkadiusz Janz, Piotr Szymański, Marcin Wątroba, Mikołaj Morzy, Tomasz Jan Kajdanowicz, Maciej Piasecki (Politechnika Wrocławska) |
This is the way: designing and compiling LEPISZCZE, a comprehensive NLP benchmark for Polish |
Coraz szersza dostępność zasobów obliczeniowych i danych do trenowania dużych modeli językowych zwiększa zapotrzebowanie na tworzenie solidnych środowisk ewaluacyjnych pozwalających na rzetelne oszacowanie postępów w modelowaniu języka. W ostatnich latach zauważalny jest znaczący postęp prac nad standaryzacją środowisk ewaluacyjnych dla języka angielskiego. Środowiska takie jak GLUE, SuperGLUE czy KILT stały się standardowymi narzędziami do oceny modeli językowych. W tworzeniu środowisk dla innych języków wielu badaczy koncentrowało się na replikowaniu środowiska GLUE, czego przykładem jest polski benchmark KLEJ. W niniejszej pracy przedstawiamy przegląd prac nad tworzeniem środowisk ewaluacyjnych dla języków nisko-zasobowych. Pokazujemy, że wciąż wiele języków nie posiada wyczerpującego zestawu danych testowych do oceny modeli językowych. Wskazujemy obecne w środowiskach ewaluacyjnych luki i porównujemy dostępne w ramach tych środowisk zadania odnosząc się przy tym do języka angielskiego i języka chińskiego - języków o licznych zasobach treningowo-testowych. Głównym wynikiem niniejszej pracy jest LEPISZCZE – nowe środowisko ewaluacyjne dla polskiej technologii językowej opartej na modelowaniu języka, z szerokim zestawem różnorodnych zadań testowych. Zaproponowane środowisko zostało zaprojektowane z myślą o elastyczności w dodawaniu zadań, wprowadzaniu nowych modeli językowych, nadsyłaniu wyników oraz wersjonowaniu danych i modeli. Wraz ze środowiskiem dostarczamy również ocenę kilku nowych modeli językowych oraz dołączamy zarówno poprawione zbiory istniejące w literaturze jak również i nowe zbiory testowe dla nowych zadań. W środowisku zawarto 5 istniejących zbiorów danych i 8 nowych zbiorów danych, które dotychczas nie były używane w ewaluacji modeli językowych. W pracy zawarto również doświadczenia i wnioski wynikające z pracy nad tworzeniem środowiska ewaluacyjnego LEPISZCZE jako wskazówki dla projektantów podobnych środowisk w innych językach o ograniczonych zasobach językowych. |
Zapraszamy także do zapoznania się z archiwum seminariów z lat 2000–2015 oraz listą wystąpień z lat 2015–2022. |