Locked History Actions

Diff for "seminarium"

Differences between revisions 737 and 739 (spanning 2 versions)
Revision 737 as of 2022-12-19 13:28:10
Size: 18777
Comment:
Revision 739 as of 2023-01-02 09:13:24
Size: 19903
Comment:
Deletions are marked like this. Additions are marked like this.
Line 21: Line 21:
||<style="border:0;padding-top:5px;padding-bottom:5px">'''19 grudnia 2022''' (UWAGA, seminarium odbędzie się wyjątkowo o 14:00!)|| ||<style="border:0;padding-top:5px;padding-bottom:5px">'''19 grudnia 2022'''||
Line 28: Line 28:
||<style="border:0;padding-left:30px;padding-bottom:5px">'''Tytuł wystąpienia udostępnimy już niedługo''' &#160;{{attachment:seminarium-archiwum/icon-pl.gif|Wystąpienie w języku polskim.}}||
||<style="border:0;padding-left:30px;padding-bottom:15px">Streszczenie wystąpienia będzie dostępne już wkrótce.||
||<style="border:0;padding-left:30px;padding-bottom:5px">[[http://zil.ipipan.waw.pl/seminarium-online|{{attachment:seminarium-archiwum/teams.png}}]] '''Wyzwania związane z oceną tekstu generowanego maszynowo''' &#160;{{attachment:seminarium-archiwum/icon-pl.gif|Wystąpienie w języku polskim.}}||
||<style="border:0;padding-left:30px;padding-bottom:15px">Postęp w generowaniu języka naturalnego (NLG) utrudnił badaczom skuteczne ocenianie wyników najnowszych modeli. Klasyczne metryki, takie jak BLEU czy ROUGE, nie są już wystarczające, aby odróżnić wysokiej jakości teksty od tych o niższej jakości, zwłaszcza w kreatywnych taskach takich jak generowanie opowieści czy poezji, lub też w przypadku oceny dłuższych tekstów w odróżnieniu od ewaluacji pojedynczych zdań. W rezultacie wielu badaczy ucieka się do crowdsourcingu, korzystając z platform, takich jak Amazon Mechanical Turk (AMT), aby ocenić spójność czy gramatyczność wygenerowanych tekstów. W tej prezentacji przedstawię najpierw serię eksperymentów pokazującą wyzwania takiej ewaluacji, demonstrując, że nawet eksperci mogą mieć trudności z ocenianiem tekstu wygenerowanego przez modele przy użyciu skali Likerta, zwłaszcza gdy oceniają oni kreatywny tekst. W drugiej części omówię podobne kwestie związane z automatycznym ocenianiem tłumaczenia maszynowego literatury pięknej oraz wyjaśnię niektóre unikalne wyzwania związane z samym zadaniem tłumaczenia takich tekstów.||

Seminarium „Przetwarzanie języka naturalnego” 2022–23

Seminarium Zespołu Inżynierii LingwistycznejInstytucie Podstaw Informatyki Polskiej Akademii Nauk odbywa się średnio co 2 tygodnie, zwykle w poniedziałki o godz. 10:15 (niekiedy online – prosimy o korzystanie z linku przy tytule wystąpienia) i ma charakter otwarty. Poszczególne referaty ogłaszane są na Polskiej Liście Językoznawczej oraz na stronie Lingwistyka komputerowa na Facebooku. Nagrania wystąpień dostępne są na kanale YouTube.

seminar

3 października 2022

Sławomir Dadas (Ośrodek Przetwarzania Informacji)

https://www.youtube.com/watch?v=TGwLeE1Y5X4 Doświadczenia z trenowania neuronowych enkoderów zdaniowych dla języka polskiego  Wystąpienie w języku polskim.

Transformacja zdań lub krótkich tekstów do postaci gęstych wektorów o stałej liczbie wymiarów znajduje zastosowanie w zadaniach takich jak wyszukiwanie informacji, odpowiadanie na pytania, grupowanie tekstów czy detekcja plagiatów. Prostym sposobem na konstrukcję tego typu reprezentacji jest agregacja wektorów wygenerowanych przez model języka lub pochodzących z zanurzeń słów. Natomiast wyższej jakości reprezentacje można uzyskać poprzez dodatkowy fine-tuning modelu języka na parach zdań semantycznie podobnych. W prezentacji przedstawione zostaną metody uczenia enkoderów zdaniowych bazujących na architekturze Transformer oraz nasze doświadczenia z trenowaniem takich modeli dla języka polskiego. Ponadto omówimy sposoby na automatyczne pozyskanie dużych zbiorów parafraz korzystając z publicznie dostępnych korpusów. Pokazany zostanie także przykład zastosowania enkoderów zdaniowych w praktyce, w systemie informatycznym służącym do wykrywania niedozwolonych zapisów w umowach konsumenckich.

14 listopada 2022

Łukasz Augustyniak, Kamil Tagowski, Albert Sawczyn, Denis Janiak, Roman Bartusiak, Adrian Dominik Szymczak, Arkadiusz Janz, Piotr Szymański, Marcin Wątroba, Mikołaj Morzy, Tomasz Jan Kajdanowicz, Maciej Piasecki (Politechnika Wrocławska)

https://pwr-edu.zoom.us/j/96657909989?pwd=VXFmcEc5blNyM0M3ekxvNGc3Q2Rsdz09 This is the way: designing and compiling LEPISZCZE, a comprehensive NLP benchmark for Polish  Wystąpienie w języku polskim. Slajdy po angielsku.

Coraz szersza dostępność zasobów obliczeniowych i danych do trenowania dużych modeli językowych zwiększa zapotrzebowanie na tworzenie solidnych środowisk ewaluacyjnych pozwalających na rzetelne oszacowanie postępów w modelowaniu języka. W ostatnich latach zauważalny jest znaczący postęp prac nad standaryzacją środowisk ewaluacyjnych dla języka angielskiego. Środowiska takie jak GLUE, SuperGLUE czy KILT stały się standardowymi narzędziami do oceny modeli językowych. W tworzeniu środowisk dla innych języków wielu badaczy koncentrowało się na replikowaniu środowiska GLUE, czego przykładem jest polski benchmark KLEJ. W niniejszej pracy przedstawiamy przegląd prac nad tworzeniem środowisk ewaluacyjnych dla języków nisko-zasobowych. Pokazujemy, że wciąż wiele języków nie posiada wyczerpującego zestawu danych testowych do oceny modeli językowych. Wskazujemy obecne w środowiskach ewaluacyjnych luki i porównujemy dostępne w ramach tych środowisk zadania odnosząc się przy tym do języka angielskiego i języka chińskiego - języków o licznych zasobach treningowo-testowych. Głównym wynikiem niniejszej pracy jest LEPISZCZE – nowe środowisko ewaluacyjne dla polskiej technologii językowej opartej na modelowaniu języka, z szerokim zestawem różnorodnych zadań testowych. Zaproponowane środowisko zostało zaprojektowane z myślą o elastyczności w dodawaniu zadań, wprowadzaniu nowych modeli językowych, nadsyłaniu wyników oraz wersjonowaniu danych i modeli. Wraz ze środowiskiem dostarczamy również ocenę kilku nowych modeli językowych oraz dołączamy zarówno poprawione zbiory istniejące w literaturze jak również i nowe zbiory testowe dla nowych zadań. W środowisku zawarto 5 istniejących zbiorów danych i 8 nowych zbiorów danych, które dotychczas nie były używane w ewaluacji modeli językowych. W pracy zawarto również doświadczenia i wnioski wynikające z pracy nad tworzeniem środowiska ewaluacyjnego LEPISZCZE jako wskazówki dla projektantów podobnych środowisk w innych językach o ograniczonych zasobach językowych.

28 listopada 2022

Aleksander Wawer (Instytut Podstaw Informatyki PAN), Justyna Sarzyńska-Wawer (Instytut Psychologii PAN)

https://www.youtube.com/IPIPAN Kłamanie po polsku: analiza języka oraz automatyczne metody wykrywania  Wystąpienie w języku polskim.

Kłamstwo jest integralną częścią codziennej komunikacji zarówno w formie pisemnej, jak i ustnej. W niniejszym wystąpieniu przedstawimy wyniki uzyskane na zbiorze blisko 1500 prawdziwych i fałszywych wypowiedzi, z których połowa to transkrypcje, a druga połowa to wypowiedzi pisemne, pochodzące z prawdopodobnie największego badania nad kłamaniem w języku polskim. W pierwszej części referatu zbadamy różnice między twierdzeniami prawdziwymi i fałszywymi: sprawdzimy, czy różnią się pod względem złożoności i wydźwięku, a także cech takich jak długość wypowiedzi, konkretność i rozkład części mowy. W drugiej części referatu opowiemy o budowaniu modeli, które automatycznie odróżniają prawdziwe od fałszywych wypowiedzi, uwzględniając proste podejścia, jak modele trenowane na cechach słownikowych, jak i bardziej złożone, pre-trenowane sieci neuronowe typu transformer. Opowiemy także o próbie wykrywania kłamania z wykorzystaniem metod automatycznego fact-checkingu i przedstawimy wstępne wyniki prac nad interpretowalnością (objaśnialnością) modeli wykrywających kłamanie.

19 grudnia 2022

Wojciech Kryściński (Salesforce Research)

http://zil.ipipan.waw.pl/seminarium-online Automatyczne streszczanie tekstu  Wystąpienie w języku polskim. Slajdy po angielsku.

Automatyczne streszczanie tekstu stanowi zadanie z dziedziny przetwarzania języka naturalnego (NLP) wymagające zaawansowanych zdolności rozumienia języka (NLU) i możliwości jego generowania (NLG). Dzięki wysiłkom społeczności naukowej i osiągniętemu rozwojowi w dziedzinie NLP w ostatnich latach poczyniono znaczne postępy w opracowywaniu modeli neuronowych dla tego zadania. Pomimo tych postępów, automatyczne streszczanie tekstu pozostaje zadaniem trudnym, które jest dalekie od rozwiązania. Prezentację zaczniemy od omówienia wczesnych podejść do zagadnienia AST oraz obecnego stanu wiedzy w tej dziedzinie. Następnie dokonamy krytycznej oceny kluczowych składników istniejącej konfiguracji badawczej: zestawów danych, metryk oceny i modeli. Na koniec skoncentrujemy się na pojawiających się kierunkach badawczych i rozważymy przyszłość automatycznego streszczenia tekstów.

9 stycznia 2023

Marzena Karpińska (University of Massachusetts Amherst)

http://zil.ipipan.waw.pl/seminarium-online Wyzwania związane z oceną tekstu generowanego maszynowo  Wystąpienie w języku polskim.

Postęp w generowaniu języka naturalnego (NLG) utrudnił badaczom skuteczne ocenianie wyników najnowszych modeli. Klasyczne metryki, takie jak BLEU czy ROUGE, nie są już wystarczające, aby odróżnić wysokiej jakości teksty od tych o niższej jakości, zwłaszcza w kreatywnych taskach takich jak generowanie opowieści czy poezji, lub też w przypadku oceny dłuższych tekstów w odróżnieniu od ewaluacji pojedynczych zdań. W rezultacie wielu badaczy ucieka się do crowdsourcingu, korzystając z platform, takich jak Amazon Mechanical Turk (AMT), aby ocenić spójność czy gramatyczność wygenerowanych tekstów. W tej prezentacji przedstawię najpierw serię eksperymentów pokazującą wyzwania takiej ewaluacji, demonstrując, że nawet eksperci mogą mieć trudności z ocenianiem tekstu wygenerowanego przez modele przy użyciu skali Likerta, zwłaszcza gdy oceniają oni kreatywny tekst. W drugiej części omówię podobne kwestie związane z automatycznym ocenianiem tłumaczenia maszynowego literatury pięknej oraz wyjaśnię niektóre unikalne wyzwania związane z samym zadaniem tłumaczenia takich tekstów.

23 stycznia 2023

Agnieszka Mikołajczyk (VoiceLab / Politechnika Gdańska / hear.ai)

Tytuł wystąpienia udostępnimy już niedługo  Wystąpienie w języku polskim.

Streszczenie wystąpienia będzie dostępne już wkrótce.

6 lutego 2023

Artur Nowakowski, Gabriela Pałka, Kamil Guttmann, Mikołaj Pokrywka (Uniwersytet Adama Mickiewicza)

Tytuł wystąpienia udostępnimy już niedługo  Wystąpienie w języku polskim.

Streszczenie wystąpienia będzie dostępne już wkrótce.

Zapraszamy także do zapoznania się z archiwum seminariów z lat 2000–2015 oraz listą wystąpień z lat 2015–2022.