Locked History Actions

Diff for "seminarium"

Differences between revisions 778 and 793 (spanning 15 versions)
Revision 778 as of 2023-09-09 21:04:03
Size: 9580
Comment:
Revision 793 as of 2023-10-17 09:28:00
Size: 13064
Comment:
Deletions are marked like this. Additions are marked like this.
Line 6: Line 6:
||<style="border:0;padding-top:5px;padding-bottom:5px">'''2 października 2023'''||
||<style="border:0;padding-left:30px;padding-bottom:0px">'''Agnieszka Mikołajczyk''' (VoiceLab), '''Piotr Pęzik''' (Uniwersytet Łódzki / VoiceLab)||
||<style="border:0;padding-left:30px;padding-bottom:5px">'''Tytuł zostanie podany wkrótce''' &#160;{{attachment:seminarium-archiwum/icon-pl.gif|Wystąpienie w języku polskim.}}||
||<style="border:0;padding-top:5px;padding-bottom:5px">'''9 października 2023'''||
||<style="border:0;padding-left:30px;padding-bottom:0px">'''Agnieszka Mikołajczyk-Bareła''', '''Wojciech Janowski''' (!VoiceLab), '''Piotr Pęzik''' (Uniwersytet Łódzki / !VoiceLab), '''Filip Żarnecki''', '''Alicja Golisowicz''' (!VoiceLab) ||
||<style="border:0;padding-left:30px;padding-bottom:5px">[[http://zil.ipipan.waw.pl/seminarium-online|{{attachment:seminarium-archiwum/teams.png}}]] '''[[attachment:seminarium-archiwum/2023-10-09.pdf|TRURL.AI: Dostrajanie dużych generatywnych modeli językowych na wielojęzycznych zbiorach instrukcji]]''' &#160;{{attachment:seminarium-archiwum/icon-pl.gif|Wystąpienie w języku polskim.}}||
||<style="border:0;padding-left:30px;padding-bottom:15px">Wystąpienie stanowi podsumowanie kilkumiesięcznych doświadczeń z zakresu dostrajania (ang. fine-tuning) generatywnych modeli językowych na dużych, dwujęzycznych zbiorach instrukcji. Wynikiem tych prac jest otwarta wersja modelu Trurl (zob. trurl.ai), który w założeniach ma zachować poziom działania modelu wyjściowego na otwartych zbiorach ewaluacyjnych, a jednocześnie charakteryzować się lepszą skutecznością w ściśle określonych domenach i zastosowaniach, takich jak ekstrakcja informacji z interakcji biznesowych oraz etykietowanie danych ze szczególnym uwzględnieniem przetwarzania tekstów polskich. Modelem bazowym dla Trurla były modele [[https://arxiv.org/abs/2307.09288|Llama 2]] o wielkości 7 i 13 miliardów parametrów. W referacie opiszemy proces przygotowania zbiorów instrukcji, treningu oraz kwantyzacji wynikowych modeli. Podamy także przykłady użycia dostrojonych modeli na wybranych zadaniach.||

||<style="border:0;padding-top:5px;padding-bottom:5px">'''16 października 2023'''||
||<style="border:0;padding-left:30px;padding-bottom:0px">'''Konrad Wojtasik''', '''Vadim Shishkin''', '''Kacper Wołowiec''', '''Arkadiusz Janz''', '''Maciej Piasecki''' (Politechnika Wrocławska)||
||<style="border:0;padding-left:30px;padding-bottom:5px">[[http://zil.ipipan.waw.pl/seminarium-online|{{attachment:seminarium-archiwum/teams.png}}]] '''Ewaluacja i trenowanie modeli do wyszukiwania informacji w ustawieniu zero-shot dla różnych domen dokumentów''' &#160;{{attachment:seminarium-archiwum/icon-en.gif|Wystąpienie w języku angielskim.}}||
||<style="border:0;padding-left:30px;padding-bottom:15px">Przeszukiwanie dużych kolekcji dokumentów w celu odnalezienia interesujących nas informacji jest niezwykle ważnym kierunkiem badawczym w dziedzinie przetwarzania języka naturalnego. Jest to kluczowy komponent w systemach odpowiadania na pytania, gdzie często model odpowiadający korzysta z informacji zawartych w bazie danych z aktualną wiedzą. Pozwala to nie tylko na aktualizację wiedzy, na podstawie której system odpowiada na zapytania użytkownika, ale również ogranicza jego halucynacje. Aktualnie modele do wyszukiwania informacji są sieciami neuronowymi i wymagają dużych zasobów uczących do ich wytrenowania. Przez wiele lat, metody dopasowania leksykalnego jak BM25, osiągały lepsze wyniki niż wytrenowane modele, jednak aktualne architektury i rozległe zbiory danych pozwalają na prześcignięcie leksykalnych rozwiązań. W prezentacji przedstawię dostępne zbiory służące do ewaluacji i trenowania aktualnych architektur do wyszukiwania informacji w kolekcjach dokumentów z różnych domen, jak i kierunki rozwoju na przyszłość.||

||<style="border:0;padding-top:5px;padding-bottom:5px">'''30 października 2023'''||
||<style="border:0;padding-left:30px;padding-bottom:0px">'''Agnieszka Faleńska''' (Uniwersytet w Stuttgarcie)||
||<style="border:0;padding-left:30px;padding-bottom:5px">'''Steps towards Bias-Aware NLP Systems''' &#160;{{attachment:seminarium-archiwum/icon-en.gif|Wystąpienie w języku angielskim.}}||
Line 11: Line 21:
||<style="border:0;padding-top:5px;padding-bottom:5px">'''23 października 2023'''|| ||<style="border:0;padding-top:5px;padding-bottom:5px">'''13 listopada 2023'''||

Seminarium „Przetwarzanie języka naturalnego” 2023–24

Seminarium Zespołu Inżynierii LingwistycznejInstytucie Podstaw Informatyki Polskiej Akademii Nauk odbywa się średnio co 2 tygodnie, zwykle w poniedziałki o godz. 10:15 (niekiedy online – prosimy o korzystanie z linku przy tytule wystąpienia) i ma charakter otwarty. Poszczególne referaty ogłaszane są na Polskiej Liście Językoznawczej oraz na stronie Lingwistyka komputerowa na Facebooku. Nagrania wystąpień dostępne są na kanale YouTube.

seminar

9 października 2023

Agnieszka Mikołajczyk-Bareła, Wojciech Janowski (VoiceLab), Piotr Pęzik (Uniwersytet Łódzki / VoiceLab), Filip Żarnecki, Alicja Golisowicz (VoiceLab)

http://zil.ipipan.waw.pl/seminarium-online TRURL.AI: Dostrajanie dużych generatywnych modeli językowych na wielojęzycznych zbiorach instrukcji  Wystąpienie w języku polskim.

Wystąpienie stanowi podsumowanie kilkumiesięcznych doświadczeń z zakresu dostrajania (ang. fine-tuning) generatywnych modeli językowych na dużych, dwujęzycznych zbiorach instrukcji. Wynikiem tych prac jest otwarta wersja modelu Trurl (zob. trurl.ai), który w założeniach ma zachować poziom działania modelu wyjściowego na otwartych zbiorach ewaluacyjnych, a jednocześnie charakteryzować się lepszą skutecznością w ściśle określonych domenach i zastosowaniach, takich jak ekstrakcja informacji z interakcji biznesowych oraz etykietowanie danych ze szczególnym uwzględnieniem przetwarzania tekstów polskich. Modelem bazowym dla Trurla były modele Llama 2 o wielkości 7 i 13 miliardów parametrów. W referacie opiszemy proces przygotowania zbiorów instrukcji, treningu oraz kwantyzacji wynikowych modeli. Podamy także przykłady użycia dostrojonych modeli na wybranych zadaniach.

16 października 2023

Konrad Wojtasik, Vadim Shishkin, Kacper Wołowiec, Arkadiusz Janz, Maciej Piasecki (Politechnika Wrocławska)

http://zil.ipipan.waw.pl/seminarium-online Ewaluacja i trenowanie modeli do wyszukiwania informacji w ustawieniu zero-shot dla różnych domen dokumentów  Wystąpienie w języku angielskim.

Przeszukiwanie dużych kolekcji dokumentów w celu odnalezienia interesujących nas informacji jest niezwykle ważnym kierunkiem badawczym w dziedzinie przetwarzania języka naturalnego. Jest to kluczowy komponent w systemach odpowiadania na pytania, gdzie często model odpowiadający korzysta z informacji zawartych w bazie danych z aktualną wiedzą. Pozwala to nie tylko na aktualizację wiedzy, na podstawie której system odpowiada na zapytania użytkownika, ale również ogranicza jego halucynacje. Aktualnie modele do wyszukiwania informacji są sieciami neuronowymi i wymagają dużych zasobów uczących do ich wytrenowania. Przez wiele lat, metody dopasowania leksykalnego jak BM25, osiągały lepsze wyniki niż wytrenowane modele, jednak aktualne architektury i rozległe zbiory danych pozwalają na prześcignięcie leksykalnych rozwiązań. W prezentacji przedstawię dostępne zbiory służące do ewaluacji i trenowania aktualnych architektur do wyszukiwania informacji w kolekcjach dokumentów z różnych domen, jak i kierunki rozwoju na przyszłość.

30 października 2023

Agnieszka Faleńska (Uniwersytet w Stuttgarcie)

Steps towards Bias-Aware NLP Systems  Wystąpienie w języku angielskim.

Streszczenie zostanie podane wkrótce.

13 listopada 2023

Piotr Rybak (Instytut Podstaw Informatyki PAN)

Najnowsze postępy w rozwoju systemów do odpowiadania na pytania w języku polskim  Wystąpienie w języku polskim.

Streszczenie zostanie podane wkrótce.

Zapraszamy także do zapoznania się z archiwum seminariów z lat 2000–2015 oraz listą wystąpień z lat 2015–2023.