Revision 654 as of 2021-12-20 10:56:43

Clear message
Locked History Actions

seminarium

Seminarium „Przetwarzanie języka naturalnego” 2021–22

Seminarium Zespołu Inżynierii LingwistycznejInstytucie Podstaw Informatyki Polskiej Akademii Nauk odbywa się średnio co 2 tygodnie, zwykle w poniedziałki o godz. 10:15 (obecnie online – prosimy o korzystanie z linku przy tytule wystąpienia) i ma charakter otwarty. Poszczególne referaty ogłaszane są na Polskiej Liście Językoznawczej oraz na stronie Lingwistyka komputerowa na Facebooku. Nagrania wystąpień dostępne są na kanale YouTube.

seminar

11 października 2021 (seminarium połączone z instytutowym)

Adam Przepiórkowski (Instytut Podstaw Informatyki PAN, Uniwersytet Warszawski)

Kwantyfikatory a sprawa polska  Wystąpienie w języku polskim.

O kwantyfikacji piszą prawie wszyscy semantycy i w prawie każdym tekście dotyczącym semantyki formalnej, lecz nikt i nigdy nie zaproponował pełnej analizy semantycznej zjawiska zilustrowanego niniejszym zdaniem. W zdaniu tym występują konstrukcje współrzędnie złożone składające się z wyrażeń kwantyfikatorowych pełniących różne funkcje w zdaniu: „prawie wszyscy semantycy i w prawie każdym tekście…” oraz „nikt i nigdy”. Konstrukcje takie są stosunkowo częste w języku polskim i występują także w innych językach słowiańskich oraz w pewnych językach sąsiadujących z językami słowiańskimi, np. w węgierskim. W niniejszym referacie zaproponuję analizę semantyczną takich konstrukcji opartą na pojęciu kwantyfikatorów uogólnionych (Mostowski; Lindström; Barwise i Cooper), a konkretnie — kwantyfikatorów poliadycznych (van Benthem; Keenan; Westerståhl). Do pełnego zrozumienia referatu powinno wystarczyć obycie z formułami logiki predykatów; wszystkie pojęcia lingwistyczne (w tym „konstrukcje współrzędnie złożone”, „funkcje w zdaniu”) i logiczne (w tym „kwantyfikatory uogólnione” i „kwantyfikatory poliadyczne”) zostaną wyjaśnione w referacie.

18 października 2021

Przemysław Kazienko, Jan Kocoń (Politechnika Wrocławska)

https://www.youtube.com/watch?v=mvjO4R1r6gM Spersonalizowane przetwarzanie języka naturalnego  Wystąpienie w języku angielskim.

Wiele zadań z zakresu przetwarzania języka naturalnego, takich jak klasyfikacja tekstów obraźliwych czy emocjonalnych, ma z natury charakter subiektywny. Jest to duże wyzwanie, szczególnie w odniesieniu do procesu anotacji. Ludzie postrzegają treści w bardzo indywidualny sposób. Większość obecnie stosowanych procedur anotacji ma na celu osiągnięcie wysokiego poziomu zgodności. Większość istniejących metod uczenia maszynowego opiera się na uzgodnionych lub większościowych anotacjach. Jednakże, wytyczne dotyczące anotacji subiektywnych treści mogą ograniczać swobodę podejmowania decyzji przez anotatorów. Motywowani umiarkowaną zgodnością anotacji w zbiorach danych dotyczących obraźliwych i emocjonalnych treści, stawiamy hipotezę, że należy wprowadzić spersonalizowane podejście do tak subiektywnych zadań. Proponujemy nowe architektury głębokiego uczenia, które biorą pod uwagę nie tylko treść, ale również charakterystykę danego człowieka. Proponujemy różne podejścia do uczenia reprezentacji i przetwarzania danych o odbiorcach tekstów. Eksperymenty przeprowadziliśmy na czterech zestawach danych. Pierwsze trzy, to dyskusje z Wikipedii, anotowane takimi zjawiskami, jak atak, agresja i toksyczność. Czwarty zbiór to opinie anotowane dziesięcioma kategoriami emocji. Wszystkie nasze modele oparte o reprezentację człowieka znacząco poprawiają jakość predykcji w zadaniach subiektywnych, ocenianych z perspektywy jednostki. Dodatkowo, opracowaliśmy wymagania dotyczące procedur anotacji, personalizacji i przetwarzania treści, aby uczynić nasze rozwiązania zorientowanymi na człowieka.

8 listopada 2021

Ryszard Tuora, Łukasz Kobyliński (Instytut Podstaw Informatyki PAN)

https://www.youtube.com/watch?v=KeeVWXXQlw8 Wykorzystanie analizy zależnościowej w automatycznej odmianie wyrażeń wielowyrazowych dla języka polskiego  Wystąpienie w języku polskim.

Generowanie języka naturalnego dla języków o bogatej morfologii może zyskać na automatycznych systemach do odmiany słów. W tej pracy zaprezentujemy system, który potrafi radzić sobie z tym zadaniem, ze szczególnym naciskiem na pracę z wyrażeniami wielowyrazowymi (MWE). Procedura opiera się na regułach wydobytych automatycznie z treebanku zależnościowego. Utworzony system jest następnie ewaluowany na słowniku polskich wyrażeń wielowyrazowych. Dodatkowo, zbliżony algorytm może zostać wykorzystany do lematyzacji wyrażeń wielowyrazowych. Sam system może zostać zaś zaaplikowany także do innych języków, o zbliżonych mechanizmach morfologicznych – zaprezentujemy proste rozwiązanie przygotowane dla języka rosyjskiego.

29 listopada 2021 (seminarium połączone z instytutowym)

Piotr Przybyła (Instytut Podstaw Informatyki PAN)

https://teams.microsoft.com/l/meetup-join/19%3a06de5a6d7ed840f0a53c26bf62c9ec18%40thread.tacv2/1637587495615?context=%7b%22Tid%22%3a%220425f1d9-16b2-41e3-a01a-0c02a63d13d6%22%2c%22Oid%22%3a%2256c98727-58a9-4bc2-a706-2e47ff6ae312%22%7d Kiedy dokładność klasyfikacji to za mało: wyjaśnianie oceny wiarygodności tekstu i pomiar reakcji użytkowników  Wystąpienie w języku polskim.

Automatyczna ocena wiarygodności tekstu jest ostatnio niezwykle popularnym zadaniem NLP, dla którego proponuje się wiele rozwiązań ewaluowanych na podstawie dokładności klasyfikacji. Tymczasem niewiele uwagi poświęca się scenariuszom wdrożenia tego typu modeli, które gwarantowałyby zgodne z oczekiwaniami ograniczenie rozprzestrzeniania się dezinformacji. W ramach wystąpienia przedstawione będą prace, w ramach których zaimplementowano dwa tego typu modele w formie rozszerzenia do przeglądarki internetowej i zbadano ich interakcję z użytkownikami, co pozwoliło odpowiedzieć na kilka ważnych pytań. Jak można skompresować duże modele klasyfikacji tekstu, aby wdrożyć je w środowisku o niewielkich zasobach? Jakie techniki wizualizacji i wyjaśniania modeli są najbardziej efektywne we współpracy z człowiekiem? Czy korzystanie z takich narzędzie w istocie zwiększa zdolność do rozpoznawania treści 'fake news'?

6 grudnia 2021

Joanna Byszuk (Instytut Języka Polskiego PAN)

W kierunku stylometrii multimodalnej – możliwości i wyzwania nowego podejścia do analizy filmów i seriali  Wystąpienie w języku polskim.

W wystąpieniu przedstawione zostanie nowe podejście do ilościowej analizy utworów multimodalnych, na przykładzie korpusu serialu telewizyjnego Doctor Who, oparte na stylometrii oraz teorii multimodalnej analizy filmowej. Metody stylometryczne od dawna cieszą się popularnością w analizie literatury. Zwykle opierają się na porównywaniu tekstów pod względem częstotliwości użycia określonych cech, które tworzą tak zwane „stylometryczne odciski palca”, czyli wzorce charakterystyczne dla autorów, gatunków lub innych czynników. Metody te jednak rzadko stosuje się do danych innych niż tekst, choć w ostatnich latach pojawiły się badania wykorzystujące stylometrię do analizy ruchów w tańcu (Miguel Escobar Varela) czy muzyce (Backer i Kranenburg). Teoria multimodalnej analizy filmu jest z kolei dość nowym podejściem, rozwijanym głównie przez Johna Batemana i Janinę Wildfeuer, podkreślającym istotność badania informacji pochodzących z różnych modalności wizualnych, językowych i dźwiękowych dla pełniejszej interpretacji. W prezentowanym podejściu stylometryczne metody porównywania utworów są zastosowane do różnych typów cech zaczerpniętych z obrazu, dźwięku oraz treści dialogów. W wystąpieniu omówione zostaną zalety i wyzwania takiego podejścia, a także ogólne możliwości ilościowej analizy mediów filmowych.

20 grudnia 2021

https://teams.microsoft.com/l/meetup-join/19%3a2a54bf781d2a466da1e9adec3c87e6c2%40thread.tacv2/1639467723189?context=%7b%22Tid%22%3a%220425f1d9-16b2-41e3-a01a-0c02a63d13d6%22%2c%22Oid%22%3a%22f5f2c910-5438-48a7-b9dd-683a5c3daf1e%22%7d Piotr Pęzik (Uniwersytet Łódzki / VoiceLab), Agnieszka Mikołajczyk, Adam Wawrzyński (VoiceLab), Bartłomiej Nitoń, Maciej Ogrodniczuk (Instytut Podstaw Informatyki PAN)

Generowanie słów kluczowych z krótkich tekstów za pomocą modelu T5  Wystąpienie w języku polskim.

Tematem wystąpienia jest ewaluacja zastosowań polskiej wersji modelu językowego T5 (plT5) w wydobywaniu słów kluczowych z krótkich tekstów. Autorzy opisują trening i testy modelu na opracowanym w ramach projektu CURLICAT Otwartym Korpusie Metadanych Nauki Polskiej. Porównana zostanie jakość słów kluczowych generowanych czterema różnymi metodami: a) plT5 jako model text-to-text, b) extremeText jako klasyfikator z nadzorem, c) TermoPL jako metoda ekstrakcji terminologii oraz d) KeyBERT jako alternatywny model transformerowy. Zilustrowana zostanie również nieoczekiwana przenośność wytrenowanego modelu plT5 do domen tematycznych niezwiązanych z korpusem streszczeń artykułów naukowych, takich jak teksty informacyjne, czy też transkrypcje dialogów telefonicznych.

31 stycznia 2022

Tomasz Limisiewicz (Uniwersytet Karola w Pradze)

Interpreting and Controlling Linguistic Features in Neural Networks’ Representations  Wystąpienie w języku angielskim.

Opis wystąpienia zostanie udostępniony wkrótce.

Zapraszamy także do zapoznania się z archiwum seminariów z lat 2000–2015 oraz listą wystąpień z lat 2015–2020.